An Assessment and Estimation of the Damage Progression Behavior of IN738LC under Various Applied Stress Conditions Based on EBSD Analysis

In order to characterize the damage progression behavior of IN738LC and the influence of applied stress, the average misorientation within grains was evaluated using the electron backscattered diffraction (EBSD) method, by measuring over a million data points located across almost the whole zone of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-07, Vol.44 (7), p.3123-3135
Hauptverfasser: Kobayashi, Daisuke, Miyabe, Masamichi, Kagiya, Yukio, Sugiura, Ryuji, Yokobori, A. Toshimitsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to characterize the damage progression behavior of IN738LC and the influence of applied stress, the average misorientation within grains was evaluated using the electron backscattered diffraction (EBSD) method, by measuring over a million data points located across almost the whole zone of the tested specimens. It has been shown under various test conditions such as differing temperatures and strain rates that the average misorientation increases linearly with the increase of creep strains. As a result, it is confirmed that it is possible to assess the remaining creep fracture life from its average misorientation value regardless of the testing temperature and strain rate. In addition, the deformation and fracture mechanisms of various types of mechanical damage, such as tensile, impact, and creep conditions, were discussed by evaluating the characteristics of misorientation distribution. As a result, it has been revealed that creep damage affects a large area of the material, but it is localized near grain boundaries, which is completely different from that of tensile or impact damage. In conclusion, detailed investigation into the cross section of fracture samples using the EBSD misorientation analysis allows for the qualitative estimation of the fracture mode under various applied stress conditions, the cause of the fracture.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-013-1677-z