High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO

We report on the high thermoelectric performance of p-type polycrystalline BiCuSeO, a layered oxyselenide composed of alternating conductive (Cu 2 Se 2 ) 2− and insulating (Bi 2 O 2 ) 2+ layers. The electrical transport properties of BiCuSeO materials can be significantly improved by substituting Bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPG Asia materials 2013-05, Vol.5 (5), p.e47-e47
Hauptverfasser: Pei, Yan-Ling, He, Jiaqing, Li, Jing-Feng, Li, Fu, Liu, Qijun, Pan, Wei, Barreteau, Celine, Berardan, David, Dragoe, Nita, Zhao, Li-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e47
container_issue 5
container_start_page e47
container_title NPG Asia materials
container_volume 5
creator Pei, Yan-Ling
He, Jiaqing
Li, Jing-Feng
Li, Fu
Liu, Qijun
Pan, Wei
Barreteau, Celine
Berardan, David
Dragoe, Nita
Zhao, Li-Dong
description We report on the high thermoelectric performance of p-type polycrystalline BiCuSeO, a layered oxyselenide composed of alternating conductive (Cu 2 Se 2 ) 2− and insulating (Bi 2 O 2 ) 2+ layers. The electrical transport properties of BiCuSeO materials can be significantly improved by substituting Bi 3+ with Ca 2+ . The resulting materials exhibit a large positive Seebeck coefficient of ∼+330 μV K −1 at 300 K, which may be due to the ‘natural superlattice’ layered structure and the moderate effective mass suggested by both electronic density of states and carrier concentration calculations. After doping with Ca, enhanced electrical conductivity coupled with a moderate Seebeck coefficient leads to a power factor of ∼4.74 μW cm −1  K −2 at 923 K. Moreover, BiCuSeO shows very low thermal conductivity in the temperature range of 300 (∼0.9 W m −1  K −1 ) to 923 K (∼0.45 W m −1  K −1 ). Such low thermal conductivity values are most likely a result of the weak chemical bonds (Young’s modulus, E ∼76.5 GPa) and the strong anharmonicity of the bonding arrangement (Gruneisen parameter, γ ∼1.5). In addition to increasing the power factor, Ca doping reduces the thermal conductivity of the lattice, as confirmed by both experimental results and Callaway model calculations. The combination of optimized power factor and intrinsically low thermal conductivity results in a high ZT of ∼0.9 at 923 K for Bi 0.925 Ca 0.075 CuSeO. Thermoelectric materials: Oxyselenide optimized Li-Dong Zhao, Jiaqing He and co-workers have gained insight into the highly thermoelectric properties of a bismuth–copper oxyselenide (BiCuSeO), a polycrystalline, layered compound. BiCuSeO's ability to produce a significant electric potential from a temperature difference, and vice versa, arises from its intrinsically low thermal conductivity, and can be further improved by boosting the material's electrical conductivity through doping with strontium or barium, or introducing copper deficiencies. The researchers have now carried out an extensive characterization of the oxyselenide and propose that its conveniently low thermal conductivity results from the weak chemical bonds that exist between two different kinds of layers, and a particular bonding arrangement, in the material's lattice. Moreover, by substituting bismuth ions (Bi 3+ ) with calcium ions (Ca 3+ ) the thermal conductivity of the lattice could be lowered further, leading to an improvement in the oxyselenide's thermoelectric properties. We repo
doi_str_mv 10.1038/am.2013.15
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_1352326893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2972434921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-e03251ef6c582fc9740d85f59e060589efc844fe67026cf59e6c8e6cc67d4c63</originalsourceid><addsrcrecordid>eNpl0EFLwzAUB_AiCo65i5-g4EmlM2mTNPU2hzphsIO7h5C-bJltM5N2um9vSmUIHkLCy-_9E14UXWM0xSjjD7KepghnU0zPohHmnCQE0fz8dCbFZTTxfocQwowRTsko-liYzTZut-BqCxWo1hkV78Fp62rZKIitju330Ye7xpTgH2PTBNN4o2RVHePKfg3dsoqVbcpOteZg2mPfN5dJafdQxk9m3r3D6iq60LLyMPndx9H65Xk9XyTL1evbfLZMFMlwmwDKUopBM0V5qlWRE1RyqmkBiCHKC9CKE6KB5Shlqq8zxcNSLC-JYtk4uh1it7ISe2dq6Y7CSiMWs6XoayjF4aGiOOBgbwa7d_azA9-Kne1cE34ncEbTLGW8yIK6G5Ry1nsH-hSLkehHL2Qt-tELTAO-H7APqNmA-xP5X_8AMM6Eyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1352326893</pqid></control><display><type>article</type><title>High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Pei, Yan-Ling ; He, Jiaqing ; Li, Jing-Feng ; Li, Fu ; Liu, Qijun ; Pan, Wei ; Barreteau, Celine ; Berardan, David ; Dragoe, Nita ; Zhao, Li-Dong</creator><creatorcontrib>Pei, Yan-Ling ; He, Jiaqing ; Li, Jing-Feng ; Li, Fu ; Liu, Qijun ; Pan, Wei ; Barreteau, Celine ; Berardan, David ; Dragoe, Nita ; Zhao, Li-Dong</creatorcontrib><description>We report on the high thermoelectric performance of p-type polycrystalline BiCuSeO, a layered oxyselenide composed of alternating conductive (Cu 2 Se 2 ) 2− and insulating (Bi 2 O 2 ) 2+ layers. The electrical transport properties of BiCuSeO materials can be significantly improved by substituting Bi 3+ with Ca 2+ . The resulting materials exhibit a large positive Seebeck coefficient of ∼+330 μV K −1 at 300 K, which may be due to the ‘natural superlattice’ layered structure and the moderate effective mass suggested by both electronic density of states and carrier concentration calculations. After doping with Ca, enhanced electrical conductivity coupled with a moderate Seebeck coefficient leads to a power factor of ∼4.74 μW cm −1  K −2 at 923 K. Moreover, BiCuSeO shows very low thermal conductivity in the temperature range of 300 (∼0.9 W m −1  K −1 ) to 923 K (∼0.45 W m −1  K −1 ). Such low thermal conductivity values are most likely a result of the weak chemical bonds (Young’s modulus, E ∼76.5 GPa) and the strong anharmonicity of the bonding arrangement (Gruneisen parameter, γ ∼1.5). In addition to increasing the power factor, Ca doping reduces the thermal conductivity of the lattice, as confirmed by both experimental results and Callaway model calculations. The combination of optimized power factor and intrinsically low thermal conductivity results in a high ZT of ∼0.9 at 923 K for Bi 0.925 Ca 0.075 CuSeO. Thermoelectric materials: Oxyselenide optimized Li-Dong Zhao, Jiaqing He and co-workers have gained insight into the highly thermoelectric properties of a bismuth–copper oxyselenide (BiCuSeO), a polycrystalline, layered compound. BiCuSeO's ability to produce a significant electric potential from a temperature difference, and vice versa, arises from its intrinsically low thermal conductivity, and can be further improved by boosting the material's electrical conductivity through doping with strontium or barium, or introducing copper deficiencies. The researchers have now carried out an extensive characterization of the oxyselenide and propose that its conveniently low thermal conductivity results from the weak chemical bonds that exist between two different kinds of layers, and a particular bonding arrangement, in the material's lattice. Moreover, by substituting bismuth ions (Bi 3+ ) with calcium ions (Ca 3+ ) the thermal conductivity of the lattice could be lowered further, leading to an improvement in the oxyselenide's thermoelectric properties. We report on the promising thermoelectric performance of p-type polycrystalline BiCuSeO, which is a layered oxyselenide composed of conductive (Cu 2 Se 2 ) 2− layers that alternate with insulating (Bi 2 O 2 ) 2+ layers. Electrical transport properties can be optimized by substituting Bi 3+ with Ca 2+ . Moreover, BiCuSeO shows very low thermal conductivity in the temperature ranges of 300 (∼0.9 W m −1 K −1 ) to 923 K (∼0.45 W m −1  K −1 ). These intrinsically low thermal conductivity values may result from the weak chemical bonds of the material as well as the strong anharmonicity of the bonding arrangement. The combination of the optimized power factor and the intrinsically low thermal conductivity results in a high ZT of ∼0.9 at 923 K for Bi 0.925 Ca 0.075 CuSeO.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/am.2013.15</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/301/299/2736 ; Biomaterials ; Chemical Sciences ; Chemistry and Materials Science ; Energy Systems ; Material chemistry ; Materials Science ; Optical and Electronic Materials ; original-article ; Structural Materials ; Surface and Interface Science ; Thin Films</subject><ispartof>NPG Asia materials, 2013-05, Vol.5 (5), p.e47-e47</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group May 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-e03251ef6c582fc9740d85f59e060589efc844fe67026cf59e6c8e6cc67d4c63</citedby><cites>FETCH-LOGICAL-c431t-e03251ef6c582fc9740d85f59e060589efc844fe67026cf59e6c8e6cc67d4c63</cites><orcidid>0000-0002-2682-998X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/am.2013.15$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/am.2013.15$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,27901,27902,41096,42165,51551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02143199$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pei, Yan-Ling</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><creatorcontrib>Li, Jing-Feng</creatorcontrib><creatorcontrib>Li, Fu</creatorcontrib><creatorcontrib>Liu, Qijun</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Barreteau, Celine</creatorcontrib><creatorcontrib>Berardan, David</creatorcontrib><creatorcontrib>Dragoe, Nita</creatorcontrib><creatorcontrib>Zhao, Li-Dong</creatorcontrib><title>High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>We report on the high thermoelectric performance of p-type polycrystalline BiCuSeO, a layered oxyselenide composed of alternating conductive (Cu 2 Se 2 ) 2− and insulating (Bi 2 O 2 ) 2+ layers. The electrical transport properties of BiCuSeO materials can be significantly improved by substituting Bi 3+ with Ca 2+ . The resulting materials exhibit a large positive Seebeck coefficient of ∼+330 μV K −1 at 300 K, which may be due to the ‘natural superlattice’ layered structure and the moderate effective mass suggested by both electronic density of states and carrier concentration calculations. After doping with Ca, enhanced electrical conductivity coupled with a moderate Seebeck coefficient leads to a power factor of ∼4.74 μW cm −1  K −2 at 923 K. Moreover, BiCuSeO shows very low thermal conductivity in the temperature range of 300 (∼0.9 W m −1  K −1 ) to 923 K (∼0.45 W m −1  K −1 ). Such low thermal conductivity values are most likely a result of the weak chemical bonds (Young’s modulus, E ∼76.5 GPa) and the strong anharmonicity of the bonding arrangement (Gruneisen parameter, γ ∼1.5). In addition to increasing the power factor, Ca doping reduces the thermal conductivity of the lattice, as confirmed by both experimental results and Callaway model calculations. The combination of optimized power factor and intrinsically low thermal conductivity results in a high ZT of ∼0.9 at 923 K for Bi 0.925 Ca 0.075 CuSeO. Thermoelectric materials: Oxyselenide optimized Li-Dong Zhao, Jiaqing He and co-workers have gained insight into the highly thermoelectric properties of a bismuth–copper oxyselenide (BiCuSeO), a polycrystalline, layered compound. BiCuSeO's ability to produce a significant electric potential from a temperature difference, and vice versa, arises from its intrinsically low thermal conductivity, and can be further improved by boosting the material's electrical conductivity through doping with strontium or barium, or introducing copper deficiencies. The researchers have now carried out an extensive characterization of the oxyselenide and propose that its conveniently low thermal conductivity results from the weak chemical bonds that exist between two different kinds of layers, and a particular bonding arrangement, in the material's lattice. Moreover, by substituting bismuth ions (Bi 3+ ) with calcium ions (Ca 3+ ) the thermal conductivity of the lattice could be lowered further, leading to an improvement in the oxyselenide's thermoelectric properties. We report on the promising thermoelectric performance of p-type polycrystalline BiCuSeO, which is a layered oxyselenide composed of conductive (Cu 2 Se 2 ) 2− layers that alternate with insulating (Bi 2 O 2 ) 2+ layers. Electrical transport properties can be optimized by substituting Bi 3+ with Ca 2+ . Moreover, BiCuSeO shows very low thermal conductivity in the temperature ranges of 300 (∼0.9 W m −1 K −1 ) to 923 K (∼0.45 W m −1  K −1 ). These intrinsically low thermal conductivity values may result from the weak chemical bonds of the material as well as the strong anharmonicity of the bonding arrangement. The combination of the optimized power factor and the intrinsically low thermal conductivity results in a high ZT of ∼0.9 at 923 K for Bi 0.925 Ca 0.075 CuSeO.</description><subject>639/301/119/995</subject><subject>639/301/299/2736</subject><subject>Biomaterials</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Energy Systems</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>original-article</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Thin Films</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNpl0EFLwzAUB_AiCo65i5-g4EmlM2mTNPU2hzphsIO7h5C-bJltM5N2um9vSmUIHkLCy-_9E14UXWM0xSjjD7KepghnU0zPohHmnCQE0fz8dCbFZTTxfocQwowRTsko-liYzTZut-BqCxWo1hkV78Fp62rZKIitju330Ye7xpTgH2PTBNN4o2RVHePKfg3dsoqVbcpOteZg2mPfN5dJafdQxk9m3r3D6iq60LLyMPndx9H65Xk9XyTL1evbfLZMFMlwmwDKUopBM0V5qlWRE1RyqmkBiCHKC9CKE6KB5Shlqq8zxcNSLC-JYtk4uh1it7ISe2dq6Y7CSiMWs6XoayjF4aGiOOBgbwa7d_azA9-Kne1cE34ncEbTLGW8yIK6G5Ry1nsH-hSLkehHL2Qt-tELTAO-H7APqNmA-xP5X_8AMM6Eyw</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Pei, Yan-Ling</creator><creator>He, Jiaqing</creator><creator>Li, Jing-Feng</creator><creator>Li, Fu</creator><creator>Liu, Qijun</creator><creator>Pan, Wei</creator><creator>Barreteau, Celine</creator><creator>Berardan, David</creator><creator>Dragoe, Nita</creator><creator>Zhao, Li-Dong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2682-998X</orcidid></search><sort><creationdate>20130501</creationdate><title>High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO</title><author>Pei, Yan-Ling ; He, Jiaqing ; Li, Jing-Feng ; Li, Fu ; Liu, Qijun ; Pan, Wei ; Barreteau, Celine ; Berardan, David ; Dragoe, Nita ; Zhao, Li-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-e03251ef6c582fc9740d85f59e060589efc844fe67026cf59e6c8e6cc67d4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/119/995</topic><topic>639/301/299/2736</topic><topic>Biomaterials</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Energy Systems</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>original-article</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Yan-Ling</creatorcontrib><creatorcontrib>He, Jiaqing</creatorcontrib><creatorcontrib>Li, Jing-Feng</creatorcontrib><creatorcontrib>Li, Fu</creatorcontrib><creatorcontrib>Liu, Qijun</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Barreteau, Celine</creatorcontrib><creatorcontrib>Berardan, David</creatorcontrib><creatorcontrib>Dragoe, Nita</creatorcontrib><creatorcontrib>Zhao, Li-Dong</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Yan-Ling</au><au>He, Jiaqing</au><au>Li, Jing-Feng</au><au>Li, Fu</au><au>Liu, Qijun</au><au>Pan, Wei</au><au>Barreteau, Celine</au><au>Berardan, David</au><au>Dragoe, Nita</au><au>Zhao, Li-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>5</volume><issue>5</issue><spage>e47</spage><epage>e47</epage><pages>e47-e47</pages><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>We report on the high thermoelectric performance of p-type polycrystalline BiCuSeO, a layered oxyselenide composed of alternating conductive (Cu 2 Se 2 ) 2− and insulating (Bi 2 O 2 ) 2+ layers. The electrical transport properties of BiCuSeO materials can be significantly improved by substituting Bi 3+ with Ca 2+ . The resulting materials exhibit a large positive Seebeck coefficient of ∼+330 μV K −1 at 300 K, which may be due to the ‘natural superlattice’ layered structure and the moderate effective mass suggested by both electronic density of states and carrier concentration calculations. After doping with Ca, enhanced electrical conductivity coupled with a moderate Seebeck coefficient leads to a power factor of ∼4.74 μW cm −1  K −2 at 923 K. Moreover, BiCuSeO shows very low thermal conductivity in the temperature range of 300 (∼0.9 W m −1  K −1 ) to 923 K (∼0.45 W m −1  K −1 ). Such low thermal conductivity values are most likely a result of the weak chemical bonds (Young’s modulus, E ∼76.5 GPa) and the strong anharmonicity of the bonding arrangement (Gruneisen parameter, γ ∼1.5). In addition to increasing the power factor, Ca doping reduces the thermal conductivity of the lattice, as confirmed by both experimental results and Callaway model calculations. The combination of optimized power factor and intrinsically low thermal conductivity results in a high ZT of ∼0.9 at 923 K for Bi 0.925 Ca 0.075 CuSeO. Thermoelectric materials: Oxyselenide optimized Li-Dong Zhao, Jiaqing He and co-workers have gained insight into the highly thermoelectric properties of a bismuth–copper oxyselenide (BiCuSeO), a polycrystalline, layered compound. BiCuSeO's ability to produce a significant electric potential from a temperature difference, and vice versa, arises from its intrinsically low thermal conductivity, and can be further improved by boosting the material's electrical conductivity through doping with strontium or barium, or introducing copper deficiencies. The researchers have now carried out an extensive characterization of the oxyselenide and propose that its conveniently low thermal conductivity results from the weak chemical bonds that exist between two different kinds of layers, and a particular bonding arrangement, in the material's lattice. Moreover, by substituting bismuth ions (Bi 3+ ) with calcium ions (Ca 3+ ) the thermal conductivity of the lattice could be lowered further, leading to an improvement in the oxyselenide's thermoelectric properties. We report on the promising thermoelectric performance of p-type polycrystalline BiCuSeO, which is a layered oxyselenide composed of conductive (Cu 2 Se 2 ) 2− layers that alternate with insulating (Bi 2 O 2 ) 2+ layers. Electrical transport properties can be optimized by substituting Bi 3+ with Ca 2+ . Moreover, BiCuSeO shows very low thermal conductivity in the temperature ranges of 300 (∼0.9 W m −1 K −1 ) to 923 K (∼0.45 W m −1  K −1 ). These intrinsically low thermal conductivity values may result from the weak chemical bonds of the material as well as the strong anharmonicity of the bonding arrangement. The combination of the optimized power factor and the intrinsically low thermal conductivity results in a high ZT of ∼0.9 at 923 K for Bi 0.925 Ca 0.075 CuSeO.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/am.2013.15</doi><orcidid>https://orcid.org/0000-0002-2682-998X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1884-4049
ispartof NPG Asia materials, 2013-05, Vol.5 (5), p.e47-e47
issn 1884-4049
1884-4057
language eng
recordid cdi_proquest_journals_1352326893
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 639/301/119/995
639/301/299/2736
Biomaterials
Chemical Sciences
Chemistry and Materials Science
Energy Systems
Material chemistry
Materials Science
Optical and Electronic Materials
original-article
Structural Materials
Surface and Interface Science
Thin Films
title High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20thermoelectric%20performance%20of%20oxyselenides:%20intrinsically%20low%20thermal%20conductivity%20of%20Ca-doped%20BiCuSeO&rft.jtitle=NPG%20Asia%20materials&rft.au=Pei,%20Yan-Ling&rft.date=2013-05-01&rft.volume=5&rft.issue=5&rft.spage=e47&rft.epage=e47&rft.pages=e47-e47&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/am.2013.15&rft_dat=%3Cproquest_hal_p%3E2972434921%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1352326893&rft_id=info:pmid/&rfr_iscdi=true