Efficient estimation of the censored linear regression model
In linear regression or accelerated failure time models, complications in efficient estimation arise from the multiple roots of the efficient score and density estimation. This paper proposes a one-step efficient estimation method based on a counting process martingale, which has several advantages:...
Gespeichert in:
Veröffentlicht in: | Biometrika 2013-06, Vol.100 (2), p.525-530 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 530 |
---|---|
container_issue | 2 |
container_start_page | 525 |
container_title | Biometrika |
container_volume | 100 |
creator | LIN, YUANYUAN CHEN, KANI |
description | In linear regression or accelerated failure time models, complications in efficient estimation arise from the multiple roots of the efficient score and density estimation. This paper proposes a one-step efficient estimation method based on a counting process martingale, which has several advantages: it avoids the multiple-root problem, the initial estimator is easily available and the variance estimator can be obtained by employing plug-in rules. A simple and effective data-driven bandwidth selector is provided. The proposed estimator is proved to be semiparametric efficient, with the same asymptotic variance as the efficient estimator when the error distribution is known up to a location shift. Numerical studies with supportive evidence are presented. The proposal is applied to the Colorado Plateau uranium miners data. |
doi_str_mv | 10.1093/biomet/ass073 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1351346670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43304577</jstor_id><sourcerecordid>43304577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c570149c04b16b30f7012dc6e32e96968885054b61d14198ceedbd87bf338a3d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtHj8KC57WTTjbJghcpfkHBi57DbjLRLe2mJunBf2_KiqfhhYeZeR_GrjnccWhx0Q9hR3nRpQQKT9iMCylqbDicshkAyBqFEOfsIqXNMcpGztj9o_eDHWjMFaU87Lo8hLEKvspfVFkaU4jkqu0wUherSJ-RUjoSu-Boe8nOfLdNdPU35-zj6fF99VKv355fVw_r2i61yrVtFHDRWhA9lz2CL3HprCRcUitbqbVuoBG95I4L3mpL5HqnVe8RdYcO5-x22ruP4ftQ_jSbcIhjOWl46YdCSgWFqifKxpBSJG_2sRSKP4aDOQoykyAzCSr8zcRvUg7xHxaIIBql8Bf9pmPx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1351346670</pqid></control><display><type>article</type><title>Efficient estimation of the censored linear regression model</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>LIN, YUANYUAN ; CHEN, KANI</creator><creatorcontrib>LIN, YUANYUAN ; CHEN, KANI</creatorcontrib><description>In linear regression or accelerated failure time models, complications in efficient estimation arise from the multiple roots of the efficient score and density estimation. This paper proposes a one-step efficient estimation method based on a counting process martingale, which has several advantages: it avoids the multiple-root problem, the initial estimator is easily available and the variance estimator can be obtained by employing plug-in rules. A simple and effective data-driven bandwidth selector is provided. The proposed estimator is proved to be semiparametric efficient, with the same asymptotic variance as the efficient estimator when the error distribution is known up to a location shift. Numerical studies with supportive evidence are presented. The proposal is applied to the Colorado Plateau uranium miners data.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/ass073</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Biometrika Trust, University College London</publisher><subject>Asymptotic methods ; Estimating techniques ; Mathematical models ; Miscellanea ; Numerical analysis ; Regression analysis ; Studies</subject><ispartof>Biometrika, 2013-06, Vol.100 (2), p.525-530</ispartof><rights>2013 Biometrika Trust</rights><rights>Copyright Oxford Publishing Limited(England) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-c570149c04b16b30f7012dc6e32e96968885054b61d14198ceedbd87bf338a3d3</citedby><cites>FETCH-LOGICAL-c287t-c570149c04b16b30f7012dc6e32e96968885054b61d14198ceedbd87bf338a3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43304577$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43304577$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>LIN, YUANYUAN</creatorcontrib><creatorcontrib>CHEN, KANI</creatorcontrib><title>Efficient estimation of the censored linear regression model</title><title>Biometrika</title><description>In linear regression or accelerated failure time models, complications in efficient estimation arise from the multiple roots of the efficient score and density estimation. This paper proposes a one-step efficient estimation method based on a counting process martingale, which has several advantages: it avoids the multiple-root problem, the initial estimator is easily available and the variance estimator can be obtained by employing plug-in rules. A simple and effective data-driven bandwidth selector is provided. The proposed estimator is proved to be semiparametric efficient, with the same asymptotic variance as the efficient estimator when the error distribution is known up to a location shift. Numerical studies with supportive evidence are presented. The proposal is applied to the Colorado Plateau uranium miners data.</description><subject>Asymptotic methods</subject><subject>Estimating techniques</subject><subject>Mathematical models</subject><subject>Miscellanea</subject><subject>Numerical analysis</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtHj8KC57WTTjbJghcpfkHBi57DbjLRLe2mJunBf2_KiqfhhYeZeR_GrjnccWhx0Q9hR3nRpQQKT9iMCylqbDicshkAyBqFEOfsIqXNMcpGztj9o_eDHWjMFaU87Lo8hLEKvspfVFkaU4jkqu0wUherSJ-RUjoSu-Boe8nOfLdNdPU35-zj6fF99VKv355fVw_r2i61yrVtFHDRWhA9lz2CL3HprCRcUitbqbVuoBG95I4L3mpL5HqnVe8RdYcO5-x22ruP4ftQ_jSbcIhjOWl46YdCSgWFqifKxpBSJG_2sRSKP4aDOQoykyAzCSr8zcRvUg7xHxaIIBql8Bf9pmPx</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>LIN, YUANYUAN</creator><creator>CHEN, KANI</creator><general>Biometrika Trust, University College London</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130601</creationdate><title>Efficient estimation of the censored linear regression model</title><author>LIN, YUANYUAN ; CHEN, KANI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c570149c04b16b30f7012dc6e32e96968885054b61d14198ceedbd87bf338a3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic methods</topic><topic>Estimating techniques</topic><topic>Mathematical models</topic><topic>Miscellanea</topic><topic>Numerical analysis</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIN, YUANYUAN</creatorcontrib><creatorcontrib>CHEN, KANI</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIN, YUANYUAN</au><au>CHEN, KANI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient estimation of the censored linear regression model</atitle><jtitle>Biometrika</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>100</volume><issue>2</issue><spage>525</spage><epage>530</epage><pages>525-530</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>In linear regression or accelerated failure time models, complications in efficient estimation arise from the multiple roots of the efficient score and density estimation. This paper proposes a one-step efficient estimation method based on a counting process martingale, which has several advantages: it avoids the multiple-root problem, the initial estimator is easily available and the variance estimator can be obtained by employing plug-in rules. A simple and effective data-driven bandwidth selector is provided. The proposed estimator is proved to be semiparametric efficient, with the same asymptotic variance as the efficient estimator when the error distribution is known up to a location shift. Numerical studies with supportive evidence are presented. The proposal is applied to the Colorado Plateau uranium miners data.</abstract><cop>Oxford</cop><pub>Biometrika Trust, University College London</pub><doi>10.1093/biomet/ass073</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2013-06, Vol.100 (2), p.525-530 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_1351346670 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Asymptotic methods Estimating techniques Mathematical models Miscellanea Numerical analysis Regression analysis Studies |
title | Efficient estimation of the censored linear regression model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20estimation%20of%20the%20censored%20linear%20regression%20model&rft.jtitle=Biometrika&rft.au=LIN,%20YUANYUAN&rft.date=2013-06-01&rft.volume=100&rft.issue=2&rft.spage=525&rft.epage=530&rft.pages=525-530&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/ass073&rft_dat=%3Cjstor_proqu%3E43304577%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1351346670&rft_id=info:pmid/&rft_jstor_id=43304577&rfr_iscdi=true |