Application of grid convergence index in FE computation
This paper presents an application of the grid convergence index (GCI) concept based on the Richardson extrapolation to a selected simple problem of a cantilever beam loaded with vertical forces at the tip end. The GCI method, popular in computational fluid dynamics, has been recently recommended fo...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Polish Academy of Sciences. Technical sciences 2013-03, Vol.61 (1), p.123-128 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 1 |
container_start_page | 123 |
container_title | Bulletin of the Polish Academy of Sciences. Technical sciences |
container_volume | 61 |
creator | Kwasniewski, L |
description | This paper presents an application of the grid convergence index (GCI) concept based on the Richardson extrapolation to a selected simple problem of a cantilever beam loaded with vertical forces at the tip end. The GCI method, popular in computational fluid dynamics, has been recently recommended for finite element (FE) applications in solid and structural mechanics. Based on the results obtained usually for three meshes, the GCI method enables one to determine, in an objective manner, the order of convergence to estimate the asymptotic solution and the bounds for discretization error. The example shows that the characteristics of the convergence depend on the selection of the quantity of interest, which can be local or a global functional such as the deflection considered here. The results differ for different FE formulations, and the difference is bigger when the nonlinearities (e.g., due to plastic response) are taken into account |
doi_str_mv | 10.2478/bpasts-2013-0010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1350071896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2967736061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-2430e8d58938539669275a921b601b8f33dc67dc1569df8ea8baeb0f3c18dc753</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsGjvHgOeozM7zX5chFJaFQpe9LxsdjclpU3ibqr2vzc1Hrw4h5lheO8N_Bi7QbjjM6nuy86mPuUckHIAhDM24QSQo0Z5zibASeey4OqSTVPawlBEKAVNmJx33a52tq_bJmurbBNrn7m2-QhxExoXsrrx4Wvo2Wo53Pfdof_RXrOLyu5SmP7OK_a2Wr4unvL1y-PzYr7OHQnV53xGEJQvlCZVkBZCc1lYzbEUgKWqiLwT0jsshPaVClaVNpRQkUPlnSzoit2OuV1s3w8h9WbbHmIzvDRIBYBEpcWgglHlYptSDJXpYr238WgQzImQGQmZEyFzIjRYHkbLp931IfqwiYfjsPzJ_8cqEJETfQPZ8G2b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350071896</pqid></control><display><type>article</type><title>Application of grid convergence index in FE computation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kwasniewski, L</creator><creatorcontrib>Kwasniewski, L</creatorcontrib><description>This paper presents an application of the grid convergence index (GCI) concept based on the Richardson extrapolation to a selected simple problem of a cantilever beam loaded with vertical forces at the tip end. The GCI method, popular in computational fluid dynamics, has been recently recommended for finite element (FE) applications in solid and structural mechanics. Based on the results obtained usually for three meshes, the GCI method enables one to determine, in an objective manner, the order of convergence to estimate the asymptotic solution and the bounds for discretization error. The example shows that the characteristics of the convergence depend on the selection of the quantity of interest, which can be local or a global functional such as the deflection considered here. The results differ for different FE formulations, and the difference is bigger when the nonlinearities (e.g., due to plastic response) are taken into account</description><identifier>ISSN: 0239-7528</identifier><identifier>EISSN: 2300-1917</identifier><identifier>DOI: 10.2478/bpasts-2013-0010</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>discretization error ; finite element ; grid convergence index ; mesh refinement ; verification</subject><ispartof>Bulletin of the Polish Academy of Sciences. Technical sciences, 2013-03, Vol.61 (1), p.123-128</ispartof><rights>Copyright Versita Mar 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-2430e8d58938539669275a921b601b8f33dc67dc1569df8ea8baeb0f3c18dc753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kwasniewski, L</creatorcontrib><title>Application of grid convergence index in FE computation</title><title>Bulletin of the Polish Academy of Sciences. Technical sciences</title><description>This paper presents an application of the grid convergence index (GCI) concept based on the Richardson extrapolation to a selected simple problem of a cantilever beam loaded with vertical forces at the tip end. The GCI method, popular in computational fluid dynamics, has been recently recommended for finite element (FE) applications in solid and structural mechanics. Based on the results obtained usually for three meshes, the GCI method enables one to determine, in an objective manner, the order of convergence to estimate the asymptotic solution and the bounds for discretization error. The example shows that the characteristics of the convergence depend on the selection of the quantity of interest, which can be local or a global functional such as the deflection considered here. The results differ for different FE formulations, and the difference is bigger when the nonlinearities (e.g., due to plastic response) are taken into account</description><subject>discretization error</subject><subject>finite element</subject><subject>grid convergence index</subject><subject>mesh refinement</subject><subject>verification</subject><issn>0239-7528</issn><issn>2300-1917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1Lw0AQxRdRsGjvHgOeozM7zX5chFJaFQpe9LxsdjclpU3ibqr2vzc1Hrw4h5lheO8N_Bi7QbjjM6nuy86mPuUckHIAhDM24QSQo0Z5zibASeey4OqSTVPawlBEKAVNmJx33a52tq_bJmurbBNrn7m2-QhxExoXsrrx4Wvo2Wo53Pfdof_RXrOLyu5SmP7OK_a2Wr4unvL1y-PzYr7OHQnV53xGEJQvlCZVkBZCc1lYzbEUgKWqiLwT0jsshPaVClaVNpRQkUPlnSzoit2OuV1s3w8h9WbbHmIzvDRIBYBEpcWgglHlYptSDJXpYr238WgQzImQGQmZEyFzIjRYHkbLp931IfqwiYfjsPzJ_8cqEJETfQPZ8G2b</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Kwasniewski, L</creator><general>Versita</general><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130301</creationdate><title>Application of grid convergence index in FE computation</title><author>Kwasniewski, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-2430e8d58938539669275a921b601b8f33dc67dc1569df8ea8baeb0f3c18dc753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>discretization error</topic><topic>finite element</topic><topic>grid convergence index</topic><topic>mesh refinement</topic><topic>verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwasniewski, L</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Bulletin of the Polish Academy of Sciences. Technical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwasniewski, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of grid convergence index in FE computation</atitle><jtitle>Bulletin of the Polish Academy of Sciences. Technical sciences</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>61</volume><issue>1</issue><spage>123</spage><epage>128</epage><pages>123-128</pages><issn>0239-7528</issn><eissn>2300-1917</eissn><abstract>This paper presents an application of the grid convergence index (GCI) concept based on the Richardson extrapolation to a selected simple problem of a cantilever beam loaded with vertical forces at the tip end. The GCI method, popular in computational fluid dynamics, has been recently recommended for finite element (FE) applications in solid and structural mechanics. Based on the results obtained usually for three meshes, the GCI method enables one to determine, in an objective manner, the order of convergence to estimate the asymptotic solution and the bounds for discretization error. The example shows that the characteristics of the convergence depend on the selection of the quantity of interest, which can be local or a global functional such as the deflection considered here. The results differ for different FE formulations, and the difference is bigger when the nonlinearities (e.g., due to plastic response) are taken into account</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.2478/bpasts-2013-0010</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0239-7528 |
ispartof | Bulletin of the Polish Academy of Sciences. Technical sciences, 2013-03, Vol.61 (1), p.123-128 |
issn | 0239-7528 2300-1917 |
language | eng |
recordid | cdi_proquest_journals_1350071896 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | discretization error finite element grid convergence index mesh refinement verification |
title | Application of grid convergence index in FE computation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20grid%20convergence%20index%20in%20FE%20computation&rft.jtitle=Bulletin%20of%20the%20Polish%20Academy%20of%20Sciences.%20Technical%20sciences&rft.au=Kwasniewski,%20L&rft.date=2013-03-01&rft.volume=61&rft.issue=1&rft.spage=123&rft.epage=128&rft.pages=123-128&rft.issn=0239-7528&rft.eissn=2300-1917&rft_id=info:doi/10.2478/bpasts-2013-0010&rft_dat=%3Cproquest_cross%3E2967736061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350071896&rft_id=info:pmid/&rfr_iscdi=true |