Simple Neural-Like P Systems for Maximal Independent Set Selection
Membrane systems (P systems) are distributed computing models inspired by living cells where a collection of processors jointly achieves a computing task. The problem of maximal independent set (MIS) selection in a graph is to choose a set of nonadjacent nodes to which no further nodes can be added....
Gespeichert in:
Veröffentlicht in: | Neural computation 2013-06, Vol.25 (6), p.1642-1659 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1659 |
---|---|
container_issue | 6 |
container_start_page | 1642 |
container_title | Neural computation |
container_volume | 25 |
creator | Xu, Lei Jeavons, Peter |
description | Membrane systems (P systems) are distributed computing models inspired by living cells where a collection of processors jointly achieves a computing task. The problem of maximal independent set (MIS) selection in a graph is to choose a set of nonadjacent nodes to which no further nodes can be added. In this letter, we design a class of simple neural-like P systems to solve the MIS selection problem efficiently in a distributed way. This new class of systems possesses two features that are attractive for both distributed computing and membrane computing: first, the individual processors do not need any information about the overall size of the graph; second, they communicate using only one-bit messages. |
doi_str_mv | 10.1162/NECO_a_00443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_1349936300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2967265651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-75b97143652b2e134f6edd869ce6eece1bdc62926f816b5e308b90ab77635a1e3</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_Agiq6Pm2cpeNmD1ZmkSZqbuviC9QGr4C30MYVqXzatqJ_e6qosInhIcsiP_yQzjG0j7CMqfnB1Mrm2kQUIArHERigF-GEY3i-zEYTG-FopvcbWnXsAAIUgV9kaFxI1Ah-x41leNgV5V9S3UeFP80fybrzZq-uodF5Wt95l9JKXUeFdVCk1NGxV583oYxWUdHldbbKVLCocbX2dG-zu9OR2cu5Pr88uJkdTPxGad76WsdEYCCV5zAlFkClK01CZhBRRQhinieKGqyxEFUsSEMYGolhrJWSEJDbYeJ7btPVTT66zZe4SKoqoorp3FgMTCKmNwv-pCIyGQGkz0N1f9KHu22r4yKcyQgmAQe3NVdLWzrWU2aYdutK-WgT7MQa7OIaB73yF9nFJ6Q_-7vsADuegzBcKVpTUz1zmygrgEtFy4DjEWzD2LW8-7xdqjP-I-PM57--goe4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349936300</pqid></control><display><type>article</type><title>Simple Neural-Like P Systems for Maximal Independent Set Selection</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Xu, Lei ; Jeavons, Peter</creator><creatorcontrib>Xu, Lei ; Jeavons, Peter</creatorcontrib><description>Membrane systems (P systems) are distributed computing models inspired by living cells where a collection of processors jointly achieves a computing task. The problem of maximal independent set (MIS) selection in a graph is to choose a set of nonadjacent nodes to which no further nodes can be added. In this letter, we design a class of simple neural-like P systems to solve the MIS selection problem efficiently in a distributed way. This new class of systems possesses two features that are attractive for both distributed computing and membrane computing: first, the individual processors do not need any information about the overall size of the graph; second, they communicate using only one-bit messages.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/NECO_a_00443</identifier><identifier>PMID: 23517102</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Brain - cytology ; Cells ; Computation ; Computer Simulation ; Graphs ; Humans ; Letters ; Membranes ; Models, Neurological ; Neural Networks (Computer) ; Neurons - physiology ; Probability ; Set (Psychology)</subject><ispartof>Neural computation, 2013-06, Vol.25 (6), p.1642-1659</ispartof><rights>Copyright MIT Press Journals Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-75b97143652b2e134f6edd869ce6eece1bdc62926f816b5e308b90ab77635a1e3</citedby><cites>FETCH-LOGICAL-c372t-75b97143652b2e134f6edd869ce6eece1bdc62926f816b5e308b90ab77635a1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00443$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23517102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Jeavons, Peter</creatorcontrib><title>Simple Neural-Like P Systems for Maximal Independent Set Selection</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Membrane systems (P systems) are distributed computing models inspired by living cells where a collection of processors jointly achieves a computing task. The problem of maximal independent set (MIS) selection in a graph is to choose a set of nonadjacent nodes to which no further nodes can be added. In this letter, we design a class of simple neural-like P systems to solve the MIS selection problem efficiently in a distributed way. This new class of systems possesses two features that are attractive for both distributed computing and membrane computing: first, the individual processors do not need any information about the overall size of the graph; second, they communicate using only one-bit messages.</description><subject>Brain - cytology</subject><subject>Cells</subject><subject>Computation</subject><subject>Computer Simulation</subject><subject>Graphs</subject><subject>Humans</subject><subject>Letters</subject><subject>Membranes</subject><subject>Models, Neurological</subject><subject>Neural Networks (Computer)</subject><subject>Neurons - physiology</subject><subject>Probability</subject><subject>Set (Psychology)</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UtLxDAQB_Agiq6Pm2cpeNmD1ZmkSZqbuviC9QGr4C30MYVqXzatqJ_e6qosInhIcsiP_yQzjG0j7CMqfnB1Mrm2kQUIArHERigF-GEY3i-zEYTG-FopvcbWnXsAAIUgV9kaFxI1Ah-x41leNgV5V9S3UeFP80fybrzZq-uodF5Wt95l9JKXUeFdVCk1NGxV583oYxWUdHldbbKVLCocbX2dG-zu9OR2cu5Pr88uJkdTPxGad76WsdEYCCV5zAlFkClK01CZhBRRQhinieKGqyxEFUsSEMYGolhrJWSEJDbYeJ7btPVTT66zZe4SKoqoorp3FgMTCKmNwv-pCIyGQGkz0N1f9KHu22r4yKcyQgmAQe3NVdLWzrWU2aYdutK-WgT7MQa7OIaB73yF9nFJ6Q_-7vsADuegzBcKVpTUz1zmygrgEtFy4DjEWzD2LW8-7xdqjP-I-PM57--goe4</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Xu, Lei</creator><creator>Jeavons, Peter</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20130601</creationdate><title>Simple Neural-Like P Systems for Maximal Independent Set Selection</title><author>Xu, Lei ; Jeavons, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-75b97143652b2e134f6edd869ce6eece1bdc62926f816b5e308b90ab77635a1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Brain - cytology</topic><topic>Cells</topic><topic>Computation</topic><topic>Computer Simulation</topic><topic>Graphs</topic><topic>Humans</topic><topic>Letters</topic><topic>Membranes</topic><topic>Models, Neurological</topic><topic>Neural Networks (Computer)</topic><topic>Neurons - physiology</topic><topic>Probability</topic><topic>Set (Psychology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Jeavons, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Lei</au><au>Jeavons, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Neural-Like P Systems for Maximal Independent Set Selection</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>25</volume><issue>6</issue><spage>1642</spage><epage>1659</epage><pages>1642-1659</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>Membrane systems (P systems) are distributed computing models inspired by living cells where a collection of processors jointly achieves a computing task. The problem of maximal independent set (MIS) selection in a graph is to choose a set of nonadjacent nodes to which no further nodes can be added. In this letter, we design a class of simple neural-like P systems to solve the MIS selection problem efficiently in a distributed way. This new class of systems possesses two features that are attractive for both distributed computing and membrane computing: first, the individual processors do not need any information about the overall size of the graph; second, they communicate using only one-bit messages.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>23517102</pmid><doi>10.1162/NECO_a_00443</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2013-06, Vol.25 (6), p.1642-1659 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_proquest_journals_1349936300 |
source | MEDLINE; MIT Press Journals |
subjects | Brain - cytology Cells Computation Computer Simulation Graphs Humans Letters Membranes Models, Neurological Neural Networks (Computer) Neurons - physiology Probability Set (Psychology) |
title | Simple Neural-Like P Systems for Maximal Independent Set Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Neural-Like%20P%20Systems%20for%20Maximal%20Independent%20Set%20Selection&rft.jtitle=Neural%20computation&rft.au=Xu,%20Lei&rft.date=2013-06-01&rft.volume=25&rft.issue=6&rft.spage=1642&rft.epage=1659&rft.pages=1642-1659&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/NECO_a_00443&rft_dat=%3Cproquest_pubme%3E2967265651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349936300&rft_id=info:pmid/23517102&rfr_iscdi=true |