Nanocrystalline CO3O^sub 4^ fabricated via the combustion method
A facile and rapid combustion method has been used to prepare nano-crystalline CO3O^sub 4^ spinel employing urea as a combustion fuel. The fabrication was carried out by refluxing a mixture of cobalt nitrate and urea followed by calcination, for 3 h in static air atmosphere, at 400 °C. The thermal g...
Gespeichert in:
Veröffentlicht in: | Metals and materials international 2013-05, Vol.19 (3), p.489 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 489 |
container_title | Metals and materials international |
container_volume | 19 |
creator | Makhlouf, M Th Abu-zied, B M Mansoure, T H |
description | A facile and rapid combustion method has been used to prepare nano-crystalline CO3O^sub 4^ spinel employing urea as a combustion fuel. The fabrication was carried out by refluxing a mixture of cobalt nitrate and urea followed by calcination, for 3 h in static air atmosphere, at 400 °C. The thermal genesis of the CO3O^sub 4^ was explored by means of thermogravimetric and differential thermal analyses in air atmosphere in the temperature range 25â[euro]"1000 °C. X-ray diffraction, Fourier transform infrared spectra, and scanning electron microscopy were used to characterize the structure and morphology of the CO3O^sub 4^. The obtained results conrmed that the resulting oxides were comprised of pure single-crystalline CO3O^sub 4^ nanoparticles. Moreover, various comparison experiments showed that several experimental parameters, such as the reflux time and the urea/cobalt nitrate molar ratio, play important roles in the crystallite size as well as the morphological control of CO3O^sub 4^ powders. Consequently, the minimum crystallite size can be obtained at 12 h reflux and a urea/cobalt nitrate molar ratio of 5.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s12540-013-3017-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1346925291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957908411</sourcerecordid><originalsourceid>FETCH-proquest_journals_13469252913</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGaCL-PIBbE-fqvW0Bu5kYjZMuzpICJUCAKi0mvr0OPoDTGb5DyAphgwDx1iEPJTBAwQRgzOIRCThAyCRKNSYBhmrHVMTFlMycqwEiFMgDsr_ozmb923ndNFVn6OEqrnc3pFTeaaHTvsq0Nzl9VZr60tDMtungfGU72hpf2nxBJoVunFn-Oifr0_F2OLNHb5-DcT6p7dB3X0pQyEjxkCsU_10fPWw_Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346925291</pqid></control><display><type>article</type><title>Nanocrystalline CO3O^sub 4^ fabricated via the combustion method</title><source>SpringerNature Journals</source><creator>Makhlouf, M Th ; Abu-zied, B M ; Mansoure, T H</creator><creatorcontrib>Makhlouf, M Th ; Abu-zied, B M ; Mansoure, T H</creatorcontrib><description>A facile and rapid combustion method has been used to prepare nano-crystalline CO3O^sub 4^ spinel employing urea as a combustion fuel. The fabrication was carried out by refluxing a mixture of cobalt nitrate and urea followed by calcination, for 3 h in static air atmosphere, at 400 °C. The thermal genesis of the CO3O^sub 4^ was explored by means of thermogravimetric and differential thermal analyses in air atmosphere in the temperature range 25â[euro]"1000 °C. X-ray diffraction, Fourier transform infrared spectra, and scanning electron microscopy were used to characterize the structure and morphology of the CO3O^sub 4^. The obtained results conrmed that the resulting oxides were comprised of pure single-crystalline CO3O^sub 4^ nanoparticles. Moreover, various comparison experiments showed that several experimental parameters, such as the reflux time and the urea/cobalt nitrate molar ratio, play important roles in the crystallite size as well as the morphological control of CO3O^sub 4^ powders. Consequently, the minimum crystallite size can be obtained at 12 h reflux and a urea/cobalt nitrate molar ratio of 5.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1598-9623</identifier><identifier>EISSN: 2005-4149</identifier><identifier>DOI: 10.1007/s12540-013-3017-7</identifier><language>eng</language><publisher>Seoul: Springer Nature B.V</publisher><ispartof>Metals and materials international, 2013-05, Vol.19 (3), p.489</ispartof><rights>The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Makhlouf, M Th</creatorcontrib><creatorcontrib>Abu-zied, B M</creatorcontrib><creatorcontrib>Mansoure, T H</creatorcontrib><title>Nanocrystalline CO3O^sub 4^ fabricated via the combustion method</title><title>Metals and materials international</title><description>A facile and rapid combustion method has been used to prepare nano-crystalline CO3O^sub 4^ spinel employing urea as a combustion fuel. The fabrication was carried out by refluxing a mixture of cobalt nitrate and urea followed by calcination, for 3 h in static air atmosphere, at 400 °C. The thermal genesis of the CO3O^sub 4^ was explored by means of thermogravimetric and differential thermal analyses in air atmosphere in the temperature range 25â[euro]"1000 °C. X-ray diffraction, Fourier transform infrared spectra, and scanning electron microscopy were used to characterize the structure and morphology of the CO3O^sub 4^. The obtained results conrmed that the resulting oxides were comprised of pure single-crystalline CO3O^sub 4^ nanoparticles. Moreover, various comparison experiments showed that several experimental parameters, such as the reflux time and the urea/cobalt nitrate molar ratio, play important roles in the crystallite size as well as the morphological control of CO3O^sub 4^ powders. Consequently, the minimum crystallite size can be obtained at 12 h reflux and a urea/cobalt nitrate molar ratio of 5.[PUBLICATION ABSTRACT]</description><issn>1598-9623</issn><issn>2005-4149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0OgjAUQOHGaCL-PIBbE-fqvW0Bu5kYjZMuzpICJUCAKi0mvr0OPoDTGb5DyAphgwDx1iEPJTBAwQRgzOIRCThAyCRKNSYBhmrHVMTFlMycqwEiFMgDsr_ozmb923ndNFVn6OEqrnc3pFTeaaHTvsq0Nzl9VZr60tDMtungfGU72hpf2nxBJoVunFn-Oifr0_F2OLNHb5-DcT6p7dB3X0pQyEjxkCsU_10fPWw_Mw</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Makhlouf, M Th</creator><creator>Abu-zied, B M</creator><creator>Mansoure, T H</creator><general>Springer Nature B.V</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20130501</creationdate><title>Nanocrystalline CO3O^sub 4^ fabricated via the combustion method</title><author>Makhlouf, M Th ; Abu-zied, B M ; Mansoure, T H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_13469252913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makhlouf, M Th</creatorcontrib><creatorcontrib>Abu-zied, B M</creatorcontrib><creatorcontrib>Mansoure, T H</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Metals and materials international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makhlouf, M Th</au><au>Abu-zied, B M</au><au>Mansoure, T H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocrystalline CO3O^sub 4^ fabricated via the combustion method</atitle><jtitle>Metals and materials international</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>19</volume><issue>3</issue><spage>489</spage><pages>489-</pages><issn>1598-9623</issn><eissn>2005-4149</eissn><abstract>A facile and rapid combustion method has been used to prepare nano-crystalline CO3O^sub 4^ spinel employing urea as a combustion fuel. The fabrication was carried out by refluxing a mixture of cobalt nitrate and urea followed by calcination, for 3 h in static air atmosphere, at 400 °C. The thermal genesis of the CO3O^sub 4^ was explored by means of thermogravimetric and differential thermal analyses in air atmosphere in the temperature range 25â[euro]"1000 °C. X-ray diffraction, Fourier transform infrared spectra, and scanning electron microscopy were used to characterize the structure and morphology of the CO3O^sub 4^. The obtained results conrmed that the resulting oxides were comprised of pure single-crystalline CO3O^sub 4^ nanoparticles. Moreover, various comparison experiments showed that several experimental parameters, such as the reflux time and the urea/cobalt nitrate molar ratio, play important roles in the crystallite size as well as the morphological control of CO3O^sub 4^ powders. Consequently, the minimum crystallite size can be obtained at 12 h reflux and a urea/cobalt nitrate molar ratio of 5.[PUBLICATION ABSTRACT]</abstract><cop>Seoul</cop><pub>Springer Nature B.V</pub><doi>10.1007/s12540-013-3017-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-9623 |
ispartof | Metals and materials international, 2013-05, Vol.19 (3), p.489 |
issn | 1598-9623 2005-4149 |
language | eng |
recordid | cdi_proquest_journals_1346925291 |
source | SpringerNature Journals |
title | Nanocrystalline CO3O^sub 4^ fabricated via the combustion method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocrystalline%20CO3O%5Esub%204%5E%20fabricated%20via%20the%20combustion%20method&rft.jtitle=Metals%20and%20materials%20international&rft.au=Makhlouf,%20M%20Th&rft.date=2013-05-01&rft.volume=19&rft.issue=3&rft.spage=489&rft.pages=489-&rft.issn=1598-9623&rft.eissn=2005-4149&rft_id=info:doi/10.1007/s12540-013-3017-7&rft_dat=%3Cproquest%3E2957908411%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346925291&rft_id=info:pmid/&rfr_iscdi=true |