Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site

Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (17), p.6783-6788
Hauptverfasser: Crawford, Daniel J., Hoskins, Aaron A., Friedman, Larry J., Gelles, Jeff, Moore, Melissa J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6788
container_issue 17
container_start_page 6783
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Crawford, Daniel J.
Hoskins, Aaron A.
Friedman, Larry J.
Gelles, Jeff
Moore, Melissa J.
description Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy transfer together with colocalization single-molecule spectroscopy, a combination of methods that can directly reveal how conformational transitions in macromolecular machines are coupled to specific assembly and disassembly events. The FRET measurements suggest that the 5′ splice site and branch site remain physically separated throughout spliceosome assembly, and only approach one another after the spliceosome is activated for catalysis, at which time the pre-mRNA becomes highly dynamic. Separation of the sites of chemistry until very late in the splicing pathway may be crucial for preventing splicing at incorrect sites.
doi_str_mv 10.1073/pnas.1219305110
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1346715195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42590516</jstor_id><sourcerecordid>42590516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-9943408b21adec1db6493647fc719fbe95cf7dc6df398d0525201617c816f1fb3</originalsourceid><addsrcrecordid>eNpdkcFu1DAQhi0EokvhzAmw1AuXtJ44tuNLJVS1gFQJibZny3GcXa-8cbCTleDEpS_EI_EkOOyyBU6WNd98nvGP0Esgp0AEPRt6nU6hBEkJAyCP0AKIhIJXkjxGC0JKUdRVWR2hZymtCSGS1eQpOiop47KsYYHub1y_9LbYBG_N5C02wQejvfumRxd6fPX58hbbrWttbyweV3rEafDO2JDCxmJtRrfdkUO0xrY24TTqJov0MMSgzQqHDrOf33_s-3ByYy72LW6i7nN5vj9HTzrtk32xP4_R3dXl7cWH4vrT-48X764LU0kYCykrWpG6KUG31kDb5D0pr0RnBMiusZKZTrSGtx2VdUtYyUoCHISpgXfQNfQYne-8w9RsbGtsP0bt1RDdRsevKmin_q30bqWWYasop0JQlgVv94IYvkw2jWrjkrHe696GKSmgFQcQNS8zevIfug5T7PN6vykBDOQsPNtRJoaUou0OwwBRc8Rqjlg9RJw7Xv-9w4H_k2kG3uyBufOgm31CcVHTTLzaEes0hnhAqpLJ_AZ_MHQ6KL2MLqm7m_krCQHKGeH0Fx68wms</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346715195</pqid></control><display><type>article</type><title>Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Crawford, Daniel J. ; Hoskins, Aaron A. ; Friedman, Larry J. ; Gelles, Jeff ; Moore, Melissa J.</creator><creatorcontrib>Crawford, Daniel J. ; Hoskins, Aaron A. ; Friedman, Larry J. ; Gelles, Jeff ; Moore, Melissa J.</creatorcontrib><description>Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy transfer together with colocalization single-molecule spectroscopy, a combination of methods that can directly reveal how conformational transitions in macromolecular machines are coupled to specific assembly and disassembly events. The FRET measurements suggest that the 5′ splice site and branch site remain physically separated throughout spliceosome assembly, and only approach one another after the spliceosome is activated for catalysis, at which time the pre-mRNA becomes highly dynamic. Separation of the sites of chemistry until very late in the splicing pathway may be crucial for preventing splicing at incorrect sites.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1219305110</identifier><identifier>PMID: 23569281</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Base Sequence ; Biological Sciences ; Catalysis ; DNA Primers - genetics ; Dyes ; Fluorescence ; Image Processing, Computer-Assisted ; Introns ; Messenger RNA ; Microscopy, Fluorescence ; Molecular Sequence Data ; Molecules ; Nucleic Acid Conformation ; Oligonucleotides - genetics ; Proteins ; Ribonucleic acid ; RNA ; RNA Splice Sites - genetics ; RNA Splicing - physiology ; Saccharomyces cerevisiae ; Small nuclear ribonucleoproteins ; Small nuclear RNA ; Spectrum Analysis ; Spliceosomes ; Spliceosomes - physiology ; Splicing ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.6783-6788</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 23, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-9943408b21adec1db6493647fc719fbe95cf7dc6df398d0525201617c816f1fb3</citedby><cites>FETCH-LOGICAL-c491t-9943408b21adec1db6493647fc719fbe95cf7dc6df398d0525201617c816f1fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42590516$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42590516$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23569281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crawford, Daniel J.</creatorcontrib><creatorcontrib>Hoskins, Aaron A.</creatorcontrib><creatorcontrib>Friedman, Larry J.</creatorcontrib><creatorcontrib>Gelles, Jeff</creatorcontrib><creatorcontrib>Moore, Melissa J.</creatorcontrib><title>Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy transfer together with colocalization single-molecule spectroscopy, a combination of methods that can directly reveal how conformational transitions in macromolecular machines are coupled to specific assembly and disassembly events. The FRET measurements suggest that the 5′ splice site and branch site remain physically separated throughout spliceosome assembly, and only approach one another after the spliceosome is activated for catalysis, at which time the pre-mRNA becomes highly dynamic. Separation of the sites of chemistry until very late in the splicing pathway may be crucial for preventing splicing at incorrect sites.</description><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>DNA Primers - genetics</subject><subject>Dyes</subject><subject>Fluorescence</subject><subject>Image Processing, Computer-Assisted</subject><subject>Introns</subject><subject>Messenger RNA</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Nucleic Acid Conformation</subject><subject>Oligonucleotides - genetics</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Splice Sites - genetics</subject><subject>RNA Splicing - physiology</subject><subject>Saccharomyces cerevisiae</subject><subject>Small nuclear ribonucleoproteins</subject><subject>Small nuclear RNA</subject><subject>Spectrum Analysis</subject><subject>Spliceosomes</subject><subject>Spliceosomes - physiology</subject><subject>Splicing</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcFu1DAQhi0EokvhzAmw1AuXtJ44tuNLJVS1gFQJibZny3GcXa-8cbCTleDEpS_EI_EkOOyyBU6WNd98nvGP0Esgp0AEPRt6nU6hBEkJAyCP0AKIhIJXkjxGC0JKUdRVWR2hZymtCSGS1eQpOiop47KsYYHub1y_9LbYBG_N5C02wQejvfumRxd6fPX58hbbrWttbyweV3rEafDO2JDCxmJtRrfdkUO0xrY24TTqJov0MMSgzQqHDrOf33_s-3ByYy72LW6i7nN5vj9HTzrtk32xP4_R3dXl7cWH4vrT-48X764LU0kYCykrWpG6KUG31kDb5D0pr0RnBMiusZKZTrSGtx2VdUtYyUoCHISpgXfQNfQYne-8w9RsbGtsP0bt1RDdRsevKmin_q30bqWWYasop0JQlgVv94IYvkw2jWrjkrHe696GKSmgFQcQNS8zevIfug5T7PN6vykBDOQsPNtRJoaUou0OwwBRc8Rqjlg9RJw7Xv-9w4H_k2kG3uyBufOgm31CcVHTTLzaEes0hnhAqpLJ_AZ_MHQ6KL2MLqm7m_krCQHKGeH0Fx68wms</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Crawford, Daniel J.</creator><creator>Hoskins, Aaron A.</creator><creator>Friedman, Larry J.</creator><creator>Gelles, Jeff</creator><creator>Moore, Melissa J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130423</creationdate><title>Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site</title><author>Crawford, Daniel J. ; Hoskins, Aaron A. ; Friedman, Larry J. ; Gelles, Jeff ; Moore, Melissa J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-9943408b21adec1db6493647fc719fbe95cf7dc6df398d0525201617c816f1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>DNA Primers - genetics</topic><topic>Dyes</topic><topic>Fluorescence</topic><topic>Image Processing, Computer-Assisted</topic><topic>Introns</topic><topic>Messenger RNA</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Nucleic Acid Conformation</topic><topic>Oligonucleotides - genetics</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Splice Sites - genetics</topic><topic>RNA Splicing - physiology</topic><topic>Saccharomyces cerevisiae</topic><topic>Small nuclear ribonucleoproteins</topic><topic>Small nuclear RNA</topic><topic>Spectrum Analysis</topic><topic>Spliceosomes</topic><topic>Spliceosomes - physiology</topic><topic>Splicing</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crawford, Daniel J.</creatorcontrib><creatorcontrib>Hoskins, Aaron A.</creatorcontrib><creatorcontrib>Friedman, Larry J.</creatorcontrib><creatorcontrib>Gelles, Jeff</creatorcontrib><creatorcontrib>Moore, Melissa J.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crawford, Daniel J.</au><au>Hoskins, Aaron A.</au><au>Friedman, Larry J.</au><au>Gelles, Jeff</au><au>Moore, Melissa J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>110</volume><issue>17</issue><spage>6783</spage><epage>6788</epage><pages>6783-6788</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy transfer together with colocalization single-molecule spectroscopy, a combination of methods that can directly reveal how conformational transitions in macromolecular machines are coupled to specific assembly and disassembly events. The FRET measurements suggest that the 5′ splice site and branch site remain physically separated throughout spliceosome assembly, and only approach one another after the spliceosome is activated for catalysis, at which time the pre-mRNA becomes highly dynamic. Separation of the sites of chemistry until very late in the splicing pathway may be crucial for preventing splicing at incorrect sites.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23569281</pmid><doi>10.1073/pnas.1219305110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.6783-6788
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1346715195
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Base Sequence
Biological Sciences
Catalysis
DNA Primers - genetics
Dyes
Fluorescence
Image Processing, Computer-Assisted
Introns
Messenger RNA
Microscopy, Fluorescence
Molecular Sequence Data
Molecules
Nucleic Acid Conformation
Oligonucleotides - genetics
Proteins
Ribonucleic acid
RNA
RNA Splice Sites - genetics
RNA Splicing - physiology
Saccharomyces cerevisiae
Small nuclear ribonucleoproteins
Small nuclear RNA
Spectrum Analysis
Spliceosomes
Spliceosomes - physiology
Splicing
Yeasts
title Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20colocalization%20FRET%20evidence%20that%20spliceosome%20activation%20precedes%20stable%20approach%20of%205%E2%80%B2%20splice%20site%20and%20branch%20site&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Crawford,%20Daniel%20J.&rft.date=2013-04-23&rft.volume=110&rft.issue=17&rft.spage=6783&rft.epage=6788&rft.pages=6783-6788&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1219305110&rft_dat=%3Cjstor_proqu%3E42590516%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346715195&rft_id=info:pmid/23569281&rft_jstor_id=42590516&rfr_iscdi=true