Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site
Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy tr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (17), p.6783-6788 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6788 |
---|---|
container_issue | 17 |
container_start_page | 6783 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Crawford, Daniel J. Hoskins, Aaron A. Friedman, Larry J. Gelles, Jeff Moore, Melissa J. |
description | Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy transfer together with colocalization single-molecule spectroscopy, a combination of methods that can directly reveal how conformational transitions in macromolecular machines are coupled to specific assembly and disassembly events. The FRET measurements suggest that the 5′ splice site and branch site remain physically separated throughout spliceosome assembly, and only approach one another after the spliceosome is activated for catalysis, at which time the pre-mRNA becomes highly dynamic. Separation of the sites of chemistry until very late in the splicing pathway may be crucial for preventing splicing at incorrect sites. |
doi_str_mv | 10.1073/pnas.1219305110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1346715195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42590516</jstor_id><sourcerecordid>42590516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-9943408b21adec1db6493647fc719fbe95cf7dc6df398d0525201617c816f1fb3</originalsourceid><addsrcrecordid>eNpdkcFu1DAQhi0EokvhzAmw1AuXtJ44tuNLJVS1gFQJibZny3GcXa-8cbCTleDEpS_EI_EkOOyyBU6WNd98nvGP0Esgp0AEPRt6nU6hBEkJAyCP0AKIhIJXkjxGC0JKUdRVWR2hZymtCSGS1eQpOiop47KsYYHub1y_9LbYBG_N5C02wQejvfumRxd6fPX58hbbrWttbyweV3rEafDO2JDCxmJtRrfdkUO0xrY24TTqJov0MMSgzQqHDrOf33_s-3ByYy72LW6i7nN5vj9HTzrtk32xP4_R3dXl7cWH4vrT-48X764LU0kYCykrWpG6KUG31kDb5D0pr0RnBMiusZKZTrSGtx2VdUtYyUoCHISpgXfQNfQYne-8w9RsbGtsP0bt1RDdRsevKmin_q30bqWWYasop0JQlgVv94IYvkw2jWrjkrHe696GKSmgFQcQNS8zevIfug5T7PN6vykBDOQsPNtRJoaUou0OwwBRc8Rqjlg9RJw7Xv-9w4H_k2kG3uyBufOgm31CcVHTTLzaEes0hnhAqpLJ_AZ_MHQ6KL2MLqm7m_krCQHKGeH0Fx68wms</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346715195</pqid></control><display><type>article</type><title>Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Crawford, Daniel J. ; Hoskins, Aaron A. ; Friedman, Larry J. ; Gelles, Jeff ; Moore, Melissa J.</creator><creatorcontrib>Crawford, Daniel J. ; Hoskins, Aaron A. ; Friedman, Larry J. ; Gelles, Jeff ; Moore, Melissa J.</creatorcontrib><description>Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy transfer together with colocalization single-molecule spectroscopy, a combination of methods that can directly reveal how conformational transitions in macromolecular machines are coupled to specific assembly and disassembly events. The FRET measurements suggest that the 5′ splice site and branch site remain physically separated throughout spliceosome assembly, and only approach one another after the spliceosome is activated for catalysis, at which time the pre-mRNA becomes highly dynamic. Separation of the sites of chemistry until very late in the splicing pathway may be crucial for preventing splicing at incorrect sites.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1219305110</identifier><identifier>PMID: 23569281</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Base Sequence ; Biological Sciences ; Catalysis ; DNA Primers - genetics ; Dyes ; Fluorescence ; Image Processing, Computer-Assisted ; Introns ; Messenger RNA ; Microscopy, Fluorescence ; Molecular Sequence Data ; Molecules ; Nucleic Acid Conformation ; Oligonucleotides - genetics ; Proteins ; Ribonucleic acid ; RNA ; RNA Splice Sites - genetics ; RNA Splicing - physiology ; Saccharomyces cerevisiae ; Small nuclear ribonucleoproteins ; Small nuclear RNA ; Spectrum Analysis ; Spliceosomes ; Spliceosomes - physiology ; Splicing ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.6783-6788</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 23, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-9943408b21adec1db6493647fc719fbe95cf7dc6df398d0525201617c816f1fb3</citedby><cites>FETCH-LOGICAL-c491t-9943408b21adec1db6493647fc719fbe95cf7dc6df398d0525201617c816f1fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42590516$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42590516$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23569281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crawford, Daniel J.</creatorcontrib><creatorcontrib>Hoskins, Aaron A.</creatorcontrib><creatorcontrib>Friedman, Larry J.</creatorcontrib><creatorcontrib>Gelles, Jeff</creatorcontrib><creatorcontrib>Moore, Melissa J.</creatorcontrib><title>Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy transfer together with colocalization single-molecule spectroscopy, a combination of methods that can directly reveal how conformational transitions in macromolecular machines are coupled to specific assembly and disassembly events. The FRET measurements suggest that the 5′ splice site and branch site remain physically separated throughout spliceosome assembly, and only approach one another after the spliceosome is activated for catalysis, at which time the pre-mRNA becomes highly dynamic. Separation of the sites of chemistry until very late in the splicing pathway may be crucial for preventing splicing at incorrect sites.</description><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>DNA Primers - genetics</subject><subject>Dyes</subject><subject>Fluorescence</subject><subject>Image Processing, Computer-Assisted</subject><subject>Introns</subject><subject>Messenger RNA</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Nucleic Acid Conformation</subject><subject>Oligonucleotides - genetics</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Splice Sites - genetics</subject><subject>RNA Splicing - physiology</subject><subject>Saccharomyces cerevisiae</subject><subject>Small nuclear ribonucleoproteins</subject><subject>Small nuclear RNA</subject><subject>Spectrum Analysis</subject><subject>Spliceosomes</subject><subject>Spliceosomes - physiology</subject><subject>Splicing</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcFu1DAQhi0EokvhzAmw1AuXtJ44tuNLJVS1gFQJibZny3GcXa-8cbCTleDEpS_EI_EkOOyyBU6WNd98nvGP0Esgp0AEPRt6nU6hBEkJAyCP0AKIhIJXkjxGC0JKUdRVWR2hZymtCSGS1eQpOiop47KsYYHub1y_9LbYBG_N5C02wQejvfumRxd6fPX58hbbrWttbyweV3rEafDO2JDCxmJtRrfdkUO0xrY24TTqJov0MMSgzQqHDrOf33_s-3ByYy72LW6i7nN5vj9HTzrtk32xP4_R3dXl7cWH4vrT-48X764LU0kYCykrWpG6KUG31kDb5D0pr0RnBMiusZKZTrSGtx2VdUtYyUoCHISpgXfQNfQYne-8w9RsbGtsP0bt1RDdRsevKmin_q30bqWWYasop0JQlgVv94IYvkw2jWrjkrHe696GKSmgFQcQNS8zevIfug5T7PN6vykBDOQsPNtRJoaUou0OwwBRc8Rqjlg9RJw7Xv-9w4H_k2kG3uyBufOgm31CcVHTTLzaEes0hnhAqpLJ_AZ_MHQ6KL2MLqm7m_krCQHKGeH0Fx68wms</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Crawford, Daniel J.</creator><creator>Hoskins, Aaron A.</creator><creator>Friedman, Larry J.</creator><creator>Gelles, Jeff</creator><creator>Moore, Melissa J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130423</creationdate><title>Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site</title><author>Crawford, Daniel J. ; Hoskins, Aaron A. ; Friedman, Larry J. ; Gelles, Jeff ; Moore, Melissa J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-9943408b21adec1db6493647fc719fbe95cf7dc6df398d0525201617c816f1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>DNA Primers - genetics</topic><topic>Dyes</topic><topic>Fluorescence</topic><topic>Image Processing, Computer-Assisted</topic><topic>Introns</topic><topic>Messenger RNA</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Nucleic Acid Conformation</topic><topic>Oligonucleotides - genetics</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Splice Sites - genetics</topic><topic>RNA Splicing - physiology</topic><topic>Saccharomyces cerevisiae</topic><topic>Small nuclear ribonucleoproteins</topic><topic>Small nuclear RNA</topic><topic>Spectrum Analysis</topic><topic>Spliceosomes</topic><topic>Spliceosomes - physiology</topic><topic>Splicing</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crawford, Daniel J.</creatorcontrib><creatorcontrib>Hoskins, Aaron A.</creatorcontrib><creatorcontrib>Friedman, Larry J.</creatorcontrib><creatorcontrib>Gelles, Jeff</creatorcontrib><creatorcontrib>Moore, Melissa J.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crawford, Daniel J.</au><au>Hoskins, Aaron A.</au><au>Friedman, Larry J.</au><au>Gelles, Jeff</au><au>Moore, Melissa J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>110</volume><issue>17</issue><spage>6783</spage><epage>6788</epage><pages>6783-6788</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Removal of introns from the precursors to messenger RNA (pre-mRNAs) requires close apposition of intron ends by the spliceosome, but when and how apposition occurs is unclear. We investigated the process by which intron ends are brought together using single-molecule fluorescence resonance energy transfer together with colocalization single-molecule spectroscopy, a combination of methods that can directly reveal how conformational transitions in macromolecular machines are coupled to specific assembly and disassembly events. The FRET measurements suggest that the 5′ splice site and branch site remain physically separated throughout spliceosome assembly, and only approach one another after the spliceosome is activated for catalysis, at which time the pre-mRNA becomes highly dynamic. Separation of the sites of chemistry until very late in the splicing pathway may be crucial for preventing splicing at incorrect sites.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23569281</pmid><doi>10.1073/pnas.1219305110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.6783-6788 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1346715195 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Base Sequence Biological Sciences Catalysis DNA Primers - genetics Dyes Fluorescence Image Processing, Computer-Assisted Introns Messenger RNA Microscopy, Fluorescence Molecular Sequence Data Molecules Nucleic Acid Conformation Oligonucleotides - genetics Proteins Ribonucleic acid RNA RNA Splice Sites - genetics RNA Splicing - physiology Saccharomyces cerevisiae Small nuclear ribonucleoproteins Small nuclear RNA Spectrum Analysis Spliceosomes Spliceosomes - physiology Splicing Yeasts |
title | Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20colocalization%20FRET%20evidence%20that%20spliceosome%20activation%20precedes%20stable%20approach%20of%205%E2%80%B2%20splice%20site%20and%20branch%20site&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Crawford,%20Daniel%20J.&rft.date=2013-04-23&rft.volume=110&rft.issue=17&rft.spage=6783&rft.epage=6788&rft.pages=6783-6788&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1219305110&rft_dat=%3Cjstor_proqu%3E42590516%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346715195&rft_id=info:pmid/23569281&rft_jstor_id=42590516&rfr_iscdi=true |