Overcoming Weed Management Challenges in Cover Crop–Based Organic Rotational No-Till Soybean Production in the Eastern United States
Cover crop–based organic rotational no-till soybean production has attracted attention from farmers, researchers, and other agricultural professionals because of the ability of this new system to enhance soil conservation, reduce labor requirements, and decrease diesel fuel use compared to tradition...
Gespeichert in:
Veröffentlicht in: | Weed technology 2013-01, Vol.27 (1), p.193-203 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 1 |
container_start_page | 193 |
container_title | Weed technology |
container_volume | 27 |
creator | Mirsky, Steven B Ryan, Matthew R Teasdale, John R Curran, William S Reberg-Horton, Chris S Spargo, John T Wells, M. Scott Keene, Clair L Moyer, Jeff W |
description | Cover crop–based organic rotational no-till soybean production has attracted attention from farmers, researchers, and other agricultural professionals because of the ability of this new system to enhance soil conservation, reduce labor requirements, and decrease diesel fuel use compared to traditional organic production. This system is based on the use of cereal rye cover crops that are mechanically terminated with a roller-crimper to create in situ mulch that suppresses weeds and promotes soybean growth. In this paper, we report experiments that were conducted over the past decade in the eastern region of the United States on cover crop–based organic rotational no-till soybean production, and we outline current management strategies and future research needs. Our research has focused on maximizing cereal rye spring ground cover and biomass because of the crucial role this cover crop plays in weed suppression. Soil fertility and cereal rye sowing and termination timing affect biomass production, and these factors can be manipulated to achieve levels greater than 8,000 kg ha−1, a threshold identified for consistent suppression of annual weeds. Manipulating cereal rye seeding rate and seeding method also influences ground cover and weed suppression. In general, weed suppression is species-specific, with early emerging summer annual weeds (e.g., common ragweed), high weed seed bank densities (e.g. > 10,000 seeds m−2), and perennial weeds (e.g., yellow nutsedge) posing the greatest challenges. Due to the challenges with maximizing cereal rye weed suppression potential, we have also found high-residue cultivation to significantly improve weed control. In addition to cover crop and weed management, we have made progress with planting equipment and planting density for establishing soybean into a thick cover crop residue. Our current and future research will focus on integrated multitactic weed management, cultivar selection, insect pest suppression, and nitrogen management as part of a systems approach to advancing this new production system. Nomenclature: Common ragweed, Ambrosia artemisiifolia L.; yellow nutsedge, Cyperus esculentus L.; cereal rye, Secale cereale L.; corn, Zea mays L.; soybean, Glycine max (L). Merr.; wheat, Triticum aestivum L. La producción orgánica de soya en sistemas de rotación con cero labranza basados en cultivos de cobertura, ha atraído la atención de productores, investigadores y otros profesionales agrícolas por la habilidad de este |
doi_str_mv | 10.1614/WT-D-12-00078.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1326329988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23358326</jstor_id><sourcerecordid>23358326</sourcerecordid><originalsourceid>FETCH-LOGICAL-b394t-47f520dc2e077479bb22c831ceb19903ceaefd1ea1bafd0964b433f015d45bb93</originalsourceid><addsrcrecordid>eNqFkM2O0zAUhS0EEqWwZoWwxNoz1z9p4iVkhh9poIi2KjvLTm4yqVK7Y6dIs2PFC_CGPAkJQWxZ3cX5zrlHh5DnHC74iqvL_ZZdMS4YAOTFBX9AFjzLgIlcwUOygEIDA5l_fUyepHQA4CshYEF-rL9hrMKx8y3dI9b0o_W2xSP6gZa3tu_Rt5ho52kZRpKWMZx-ff_5xqaRXcfW-q6iX8Jghy5429NPgW27vqebcO_Qevo5hvpcTeKUMdwivbZpwOjpznfDmLEZrZiekkeN7RM--3uXZPf2elu-Zzfrdx_K1zfMSa0GpvImE1BXAiHPVa6dE6IqJK_Qca1BVmixqTla7mxTg14pp6RsgGe1ypzTcklezbmnGO7OmAZzCOc4Fk-GS7GSQuuiGKnLmapiSCliY06xO9p4bziYaWyz35orw4X5M_ZoXZIXs-OQhhD_4ULKrJhyl-TlrDc2GNvGLpndRoy9AIRQKpsINhOuC8Hjfz_-BtVKlZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326329988</pqid></control><display><type>article</type><title>Overcoming Weed Management Challenges in Cover Crop–Based Organic Rotational No-Till Soybean Production in the Eastern United States</title><source>JSTOR</source><source>Cambridge University Press Journals Complete</source><creator>Mirsky, Steven B ; Ryan, Matthew R ; Teasdale, John R ; Curran, William S ; Reberg-Horton, Chris S ; Spargo, John T ; Wells, M. Scott ; Keene, Clair L ; Moyer, Jeff W</creator><creatorcontrib>Mirsky, Steven B ; Ryan, Matthew R ; Teasdale, John R ; Curran, William S ; Reberg-Horton, Chris S ; Spargo, John T ; Wells, M. Scott ; Keene, Clair L ; Moyer, Jeff W</creatorcontrib><description>Cover crop–based organic rotational no-till soybean production has attracted attention from farmers, researchers, and other agricultural professionals because of the ability of this new system to enhance soil conservation, reduce labor requirements, and decrease diesel fuel use compared to traditional organic production. This system is based on the use of cereal rye cover crops that are mechanically terminated with a roller-crimper to create in situ mulch that suppresses weeds and promotes soybean growth. In this paper, we report experiments that were conducted over the past decade in the eastern region of the United States on cover crop–based organic rotational no-till soybean production, and we outline current management strategies and future research needs. Our research has focused on maximizing cereal rye spring ground cover and biomass because of the crucial role this cover crop plays in weed suppression. Soil fertility and cereal rye sowing and termination timing affect biomass production, and these factors can be manipulated to achieve levels greater than 8,000 kg ha−1, a threshold identified for consistent suppression of annual weeds. Manipulating cereal rye seeding rate and seeding method also influences ground cover and weed suppression. In general, weed suppression is species-specific, with early emerging summer annual weeds (e.g., common ragweed), high weed seed bank densities (e.g. > 10,000 seeds m−2), and perennial weeds (e.g., yellow nutsedge) posing the greatest challenges. Due to the challenges with maximizing cereal rye weed suppression potential, we have also found high-residue cultivation to significantly improve weed control. In addition to cover crop and weed management, we have made progress with planting equipment and planting density for establishing soybean into a thick cover crop residue. Our current and future research will focus on integrated multitactic weed management, cultivar selection, insect pest suppression, and nitrogen management as part of a systems approach to advancing this new production system. Nomenclature: Common ragweed, Ambrosia artemisiifolia L.; yellow nutsedge, Cyperus esculentus L.; cereal rye, Secale cereale L.; corn, Zea mays L.; soybean, Glycine max (L). Merr.; wheat, Triticum aestivum L. La producción orgánica de soya en sistemas de rotación con cero labranza basados en cultivos de cobertura, ha atraído la atención de productores, investigadores y otros profesionales agrícolas por la habilidad de este nuevo sistema de mejorar la conservación del suelo, reducir los requerimientos de mano de obra y disminuir el uso de combustible diesel en comparación con la producción orgánica tradicional. Este sistema está basado en el uso de centeno como cultivo de cobertura el cual es terminado mecánicamente con un rodillo de cuchillas para crear una cobertura de residuos in situ que suprime malezas y promueve el crecimiento de la soya. En este artículo, reportamos experimentos que fueron realizados durante la década pasada en la región este de los Estados Unidos sobre la producción orgánica de soya en sistemas de rotación con cero labranza basados en cultivos de cobertura, y delineamos las estrategias actuales de manejo y las necesidades futuras de investigación. Nuestra investigación se ha enfocado en maximizar la cobertura y la biomasa del centeno de primavera debido al papel crucial que este cultivo de cobertura juega en la supresión de malezas. La fertilidad del suelo y el momento de siembra y término del centeno afectan la producción de biomasa, y estos factores pueden ser manipulados para alcanzar niveles mayores a 8,000 kg ha−1, el cual es el umbral identificado para la supresión consistente de malezas anuales. Manipular la densidad y métodos de siembra también influencia la cobertura del suelo y la supresión de malezas. En general, la supresión de malezas es específica a la especie, siendo las malezas anuales de verano que emergen temprano (e.g. Ambrosia artemisiifolia), los banco de semillas con altas densidades (e.g. >10,000 semillas m−2), y las malezas perennes (e.g. Cyperus esculentus) los mayores retos. Debido a los retos de maximizar el potencial de supresión de malezas del centeno, hemos encontrado que el cultivar con altos residuos también puede mejorar el control de malezas significativamente. Adicionalmente al cultivo de cobertura y el manejo de malezas, hemos progresado con el equipo y la densidad de siembra para el establecimiento de la soya en capas gruesas de residuos de cultivos de cobertura. Nuestra investigación actual y futura se centrará en el manejo integrado de malezas multitáctico, la selección de cultivares, la supresión de plagas insectiles, y el manejo del nitrógeno como parte de un enfoque de sistemas para el avance de este nuevo sistema de producción.</description><identifier>ISSN: 0890-037X</identifier><identifier>EISSN: 1550-2740</identifier><identifier>DOI: 10.1614/WT-D-12-00078.1</identifier><language>eng</language><publisher>Lawrence: The Weed Science Society of America</publisher><subject>Agricultural practices ; Agricultural research ; Agriculture ; Ambrosia artemisiifolia ; annual weeds ; Biomass ; biomass production ; Cereal grains ; corn ; Cover crops ; Crop management ; Crop production ; crop residues ; Crop rotation ; Cultivars ; Cyperus esculentus ; diesel fuel ; Diesel fuels ; farmers ; Glycine max ; Ground cover ; Herbicides ; insect pests ; labor ; mulches ; nitrogen ; No tillage ; organic ; Organic farming ; Organic gardening ; organic production ; perennial weeds ; plant density ; planters ; professionals ; Reduced-tillage ; researchers ; Rye ; Secale cereale ; Seed banks ; seeds ; Soil conservation ; soil fertility ; sowing ; Soybeans ; spring ; summer ; SYMPOSIUM ; Triticum aestivum ; Weed control ; Weeds ; wheat ; Zea mays</subject><ispartof>Weed technology, 2013-01, Vol.27 (1), p.193-203</ispartof><rights>Copyright 2013 Weed Science Society of America</rights><rights>Copyright Allen Press Publishing Services Jan-Mar 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b394t-47f520dc2e077479bb22c831ceb19903ceaefd1ea1bafd0964b433f015d45bb93</citedby><cites>FETCH-LOGICAL-b394t-47f520dc2e077479bb22c831ceb19903ceaefd1ea1bafd0964b433f015d45bb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23358326$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23358326$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Mirsky, Steven B</creatorcontrib><creatorcontrib>Ryan, Matthew R</creatorcontrib><creatorcontrib>Teasdale, John R</creatorcontrib><creatorcontrib>Curran, William S</creatorcontrib><creatorcontrib>Reberg-Horton, Chris S</creatorcontrib><creatorcontrib>Spargo, John T</creatorcontrib><creatorcontrib>Wells, M. Scott</creatorcontrib><creatorcontrib>Keene, Clair L</creatorcontrib><creatorcontrib>Moyer, Jeff W</creatorcontrib><title>Overcoming Weed Management Challenges in Cover Crop–Based Organic Rotational No-Till Soybean Production in the Eastern United States</title><title>Weed technology</title><description>Cover crop–based organic rotational no-till soybean production has attracted attention from farmers, researchers, and other agricultural professionals because of the ability of this new system to enhance soil conservation, reduce labor requirements, and decrease diesel fuel use compared to traditional organic production. This system is based on the use of cereal rye cover crops that are mechanically terminated with a roller-crimper to create in situ mulch that suppresses weeds and promotes soybean growth. In this paper, we report experiments that were conducted over the past decade in the eastern region of the United States on cover crop–based organic rotational no-till soybean production, and we outline current management strategies and future research needs. Our research has focused on maximizing cereal rye spring ground cover and biomass because of the crucial role this cover crop plays in weed suppression. Soil fertility and cereal rye sowing and termination timing affect biomass production, and these factors can be manipulated to achieve levels greater than 8,000 kg ha−1, a threshold identified for consistent suppression of annual weeds. Manipulating cereal rye seeding rate and seeding method also influences ground cover and weed suppression. In general, weed suppression is species-specific, with early emerging summer annual weeds (e.g., common ragweed), high weed seed bank densities (e.g. > 10,000 seeds m−2), and perennial weeds (e.g., yellow nutsedge) posing the greatest challenges. Due to the challenges with maximizing cereal rye weed suppression potential, we have also found high-residue cultivation to significantly improve weed control. In addition to cover crop and weed management, we have made progress with planting equipment and planting density for establishing soybean into a thick cover crop residue. Our current and future research will focus on integrated multitactic weed management, cultivar selection, insect pest suppression, and nitrogen management as part of a systems approach to advancing this new production system. Nomenclature: Common ragweed, Ambrosia artemisiifolia L.; yellow nutsedge, Cyperus esculentus L.; cereal rye, Secale cereale L.; corn, Zea mays L.; soybean, Glycine max (L). Merr.; wheat, Triticum aestivum L. La producción orgánica de soya en sistemas de rotación con cero labranza basados en cultivos de cobertura, ha atraído la atención de productores, investigadores y otros profesionales agrícolas por la habilidad de este nuevo sistema de mejorar la conservación del suelo, reducir los requerimientos de mano de obra y disminuir el uso de combustible diesel en comparación con la producción orgánica tradicional. Este sistema está basado en el uso de centeno como cultivo de cobertura el cual es terminado mecánicamente con un rodillo de cuchillas para crear una cobertura de residuos in situ que suprime malezas y promueve el crecimiento de la soya. En este artículo, reportamos experimentos que fueron realizados durante la década pasada en la región este de los Estados Unidos sobre la producción orgánica de soya en sistemas de rotación con cero labranza basados en cultivos de cobertura, y delineamos las estrategias actuales de manejo y las necesidades futuras de investigación. Nuestra investigación se ha enfocado en maximizar la cobertura y la biomasa del centeno de primavera debido al papel crucial que este cultivo de cobertura juega en la supresión de malezas. La fertilidad del suelo y el momento de siembra y término del centeno afectan la producción de biomasa, y estos factores pueden ser manipulados para alcanzar niveles mayores a 8,000 kg ha−1, el cual es el umbral identificado para la supresión consistente de malezas anuales. Manipular la densidad y métodos de siembra también influencia la cobertura del suelo y la supresión de malezas. En general, la supresión de malezas es específica a la especie, siendo las malezas anuales de verano que emergen temprano (e.g. Ambrosia artemisiifolia), los banco de semillas con altas densidades (e.g. >10,000 semillas m−2), y las malezas perennes (e.g. Cyperus esculentus) los mayores retos. Debido a los retos de maximizar el potencial de supresión de malezas del centeno, hemos encontrado que el cultivar con altos residuos también puede mejorar el control de malezas significativamente. Adicionalmente al cultivo de cobertura y el manejo de malezas, hemos progresado con el equipo y la densidad de siembra para el establecimiento de la soya en capas gruesas de residuos de cultivos de cobertura. Nuestra investigación actual y futura se centrará en el manejo integrado de malezas multitáctico, la selección de cultivares, la supresión de plagas insectiles, y el manejo del nitrógeno como parte de un enfoque de sistemas para el avance de este nuevo sistema de producción.</description><subject>Agricultural practices</subject><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Ambrosia artemisiifolia</subject><subject>annual weeds</subject><subject>Biomass</subject><subject>biomass production</subject><subject>Cereal grains</subject><subject>corn</subject><subject>Cover crops</subject><subject>Crop management</subject><subject>Crop production</subject><subject>crop residues</subject><subject>Crop rotation</subject><subject>Cultivars</subject><subject>Cyperus esculentus</subject><subject>diesel fuel</subject><subject>Diesel fuels</subject><subject>farmers</subject><subject>Glycine max</subject><subject>Ground cover</subject><subject>Herbicides</subject><subject>insect pests</subject><subject>labor</subject><subject>mulches</subject><subject>nitrogen</subject><subject>No tillage</subject><subject>organic</subject><subject>Organic farming</subject><subject>Organic gardening</subject><subject>organic production</subject><subject>perennial weeds</subject><subject>plant density</subject><subject>planters</subject><subject>professionals</subject><subject>Reduced-tillage</subject><subject>researchers</subject><subject>Rye</subject><subject>Secale cereale</subject><subject>Seed banks</subject><subject>seeds</subject><subject>Soil conservation</subject><subject>soil fertility</subject><subject>sowing</subject><subject>Soybeans</subject><subject>spring</subject><subject>summer</subject><subject>SYMPOSIUM</subject><subject>Triticum aestivum</subject><subject>Weed control</subject><subject>Weeds</subject><subject>wheat</subject><subject>Zea mays</subject><issn>0890-037X</issn><issn>1550-2740</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkM2O0zAUhS0EEqWwZoWwxNoz1z9p4iVkhh9poIi2KjvLTm4yqVK7Y6dIs2PFC_CGPAkJQWxZ3cX5zrlHh5DnHC74iqvL_ZZdMS4YAOTFBX9AFjzLgIlcwUOygEIDA5l_fUyepHQA4CshYEF-rL9hrMKx8y3dI9b0o_W2xSP6gZa3tu_Rt5ho52kZRpKWMZx-ff_5xqaRXcfW-q6iX8Jghy5429NPgW27vqebcO_Qevo5hvpcTeKUMdwivbZpwOjpznfDmLEZrZiekkeN7RM--3uXZPf2elu-Zzfrdx_K1zfMSa0GpvImE1BXAiHPVa6dE6IqJK_Qca1BVmixqTla7mxTg14pp6RsgGe1ypzTcklezbmnGO7OmAZzCOc4Fk-GS7GSQuuiGKnLmapiSCliY06xO9p4bziYaWyz35orw4X5M_ZoXZIXs-OQhhD_4ULKrJhyl-TlrDc2GNvGLpndRoy9AIRQKpsINhOuC8Hjfz_-BtVKlZI</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Mirsky, Steven B</creator><creator>Ryan, Matthew R</creator><creator>Teasdale, John R</creator><creator>Curran, William S</creator><creator>Reberg-Horton, Chris S</creator><creator>Spargo, John T</creator><creator>Wells, M. Scott</creator><creator>Keene, Clair L</creator><creator>Moyer, Jeff W</creator><general>The Weed Science Society of America</general><general>Weed Science Society of America</general><general>Cambridge University Press</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20130101</creationdate><title>Overcoming Weed Management Challenges in Cover Crop–Based Organic Rotational No-Till Soybean Production in the Eastern United States</title><author>Mirsky, Steven B ; Ryan, Matthew R ; Teasdale, John R ; Curran, William S ; Reberg-Horton, Chris S ; Spargo, John T ; Wells, M. Scott ; Keene, Clair L ; Moyer, Jeff W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b394t-47f520dc2e077479bb22c831ceb19903ceaefd1ea1bafd0964b433f015d45bb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agricultural practices</topic><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Ambrosia artemisiifolia</topic><topic>annual weeds</topic><topic>Biomass</topic><topic>biomass production</topic><topic>Cereal grains</topic><topic>corn</topic><topic>Cover crops</topic><topic>Crop management</topic><topic>Crop production</topic><topic>crop residues</topic><topic>Crop rotation</topic><topic>Cultivars</topic><topic>Cyperus esculentus</topic><topic>diesel fuel</topic><topic>Diesel fuels</topic><topic>farmers</topic><topic>Glycine max</topic><topic>Ground cover</topic><topic>Herbicides</topic><topic>insect pests</topic><topic>labor</topic><topic>mulches</topic><topic>nitrogen</topic><topic>No tillage</topic><topic>organic</topic><topic>Organic farming</topic><topic>Organic gardening</topic><topic>organic production</topic><topic>perennial weeds</topic><topic>plant density</topic><topic>planters</topic><topic>professionals</topic><topic>Reduced-tillage</topic><topic>researchers</topic><topic>Rye</topic><topic>Secale cereale</topic><topic>Seed banks</topic><topic>seeds</topic><topic>Soil conservation</topic><topic>soil fertility</topic><topic>sowing</topic><topic>Soybeans</topic><topic>spring</topic><topic>summer</topic><topic>SYMPOSIUM</topic><topic>Triticum aestivum</topic><topic>Weed control</topic><topic>Weeds</topic><topic>wheat</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirsky, Steven B</creatorcontrib><creatorcontrib>Ryan, Matthew R</creatorcontrib><creatorcontrib>Teasdale, John R</creatorcontrib><creatorcontrib>Curran, William S</creatorcontrib><creatorcontrib>Reberg-Horton, Chris S</creatorcontrib><creatorcontrib>Spargo, John T</creatorcontrib><creatorcontrib>Wells, M. Scott</creatorcontrib><creatorcontrib>Keene, Clair L</creatorcontrib><creatorcontrib>Moyer, Jeff W</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Weed technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirsky, Steven B</au><au>Ryan, Matthew R</au><au>Teasdale, John R</au><au>Curran, William S</au><au>Reberg-Horton, Chris S</au><au>Spargo, John T</au><au>Wells, M. Scott</au><au>Keene, Clair L</au><au>Moyer, Jeff W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming Weed Management Challenges in Cover Crop–Based Organic Rotational No-Till Soybean Production in the Eastern United States</atitle><jtitle>Weed technology</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>27</volume><issue>1</issue><spage>193</spage><epage>203</epage><pages>193-203</pages><issn>0890-037X</issn><eissn>1550-2740</eissn><abstract>Cover crop–based organic rotational no-till soybean production has attracted attention from farmers, researchers, and other agricultural professionals because of the ability of this new system to enhance soil conservation, reduce labor requirements, and decrease diesel fuel use compared to traditional organic production. This system is based on the use of cereal rye cover crops that are mechanically terminated with a roller-crimper to create in situ mulch that suppresses weeds and promotes soybean growth. In this paper, we report experiments that were conducted over the past decade in the eastern region of the United States on cover crop–based organic rotational no-till soybean production, and we outline current management strategies and future research needs. Our research has focused on maximizing cereal rye spring ground cover and biomass because of the crucial role this cover crop plays in weed suppression. Soil fertility and cereal rye sowing and termination timing affect biomass production, and these factors can be manipulated to achieve levels greater than 8,000 kg ha−1, a threshold identified for consistent suppression of annual weeds. Manipulating cereal rye seeding rate and seeding method also influences ground cover and weed suppression. In general, weed suppression is species-specific, with early emerging summer annual weeds (e.g., common ragweed), high weed seed bank densities (e.g. > 10,000 seeds m−2), and perennial weeds (e.g., yellow nutsedge) posing the greatest challenges. Due to the challenges with maximizing cereal rye weed suppression potential, we have also found high-residue cultivation to significantly improve weed control. In addition to cover crop and weed management, we have made progress with planting equipment and planting density for establishing soybean into a thick cover crop residue. Our current and future research will focus on integrated multitactic weed management, cultivar selection, insect pest suppression, and nitrogen management as part of a systems approach to advancing this new production system. Nomenclature: Common ragweed, Ambrosia artemisiifolia L.; yellow nutsedge, Cyperus esculentus L.; cereal rye, Secale cereale L.; corn, Zea mays L.; soybean, Glycine max (L). Merr.; wheat, Triticum aestivum L. La producción orgánica de soya en sistemas de rotación con cero labranza basados en cultivos de cobertura, ha atraído la atención de productores, investigadores y otros profesionales agrícolas por la habilidad de este nuevo sistema de mejorar la conservación del suelo, reducir los requerimientos de mano de obra y disminuir el uso de combustible diesel en comparación con la producción orgánica tradicional. Este sistema está basado en el uso de centeno como cultivo de cobertura el cual es terminado mecánicamente con un rodillo de cuchillas para crear una cobertura de residuos in situ que suprime malezas y promueve el crecimiento de la soya. En este artículo, reportamos experimentos que fueron realizados durante la década pasada en la región este de los Estados Unidos sobre la producción orgánica de soya en sistemas de rotación con cero labranza basados en cultivos de cobertura, y delineamos las estrategias actuales de manejo y las necesidades futuras de investigación. Nuestra investigación se ha enfocado en maximizar la cobertura y la biomasa del centeno de primavera debido al papel crucial que este cultivo de cobertura juega en la supresión de malezas. La fertilidad del suelo y el momento de siembra y término del centeno afectan la producción de biomasa, y estos factores pueden ser manipulados para alcanzar niveles mayores a 8,000 kg ha−1, el cual es el umbral identificado para la supresión consistente de malezas anuales. Manipular la densidad y métodos de siembra también influencia la cobertura del suelo y la supresión de malezas. En general, la supresión de malezas es específica a la especie, siendo las malezas anuales de verano que emergen temprano (e.g. Ambrosia artemisiifolia), los banco de semillas con altas densidades (e.g. >10,000 semillas m−2), y las malezas perennes (e.g. Cyperus esculentus) los mayores retos. Debido a los retos de maximizar el potencial de supresión de malezas del centeno, hemos encontrado que el cultivar con altos residuos también puede mejorar el control de malezas significativamente. Adicionalmente al cultivo de cobertura y el manejo de malezas, hemos progresado con el equipo y la densidad de siembra para el establecimiento de la soya en capas gruesas de residuos de cultivos de cobertura. Nuestra investigación actual y futura se centrará en el manejo integrado de malezas multitáctico, la selección de cultivares, la supresión de plagas insectiles, y el manejo del nitrógeno como parte de un enfoque de sistemas para el avance de este nuevo sistema de producción.</abstract><cop>Lawrence</cop><pub>The Weed Science Society of America</pub><doi>10.1614/WT-D-12-00078.1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-037X |
ispartof | Weed technology, 2013-01, Vol.27 (1), p.193-203 |
issn | 0890-037X 1550-2740 |
language | eng |
recordid | cdi_proquest_journals_1326329988 |
source | JSTOR; Cambridge University Press Journals Complete |
subjects | Agricultural practices Agricultural research Agriculture Ambrosia artemisiifolia annual weeds Biomass biomass production Cereal grains corn Cover crops Crop management Crop production crop residues Crop rotation Cultivars Cyperus esculentus diesel fuel Diesel fuels farmers Glycine max Ground cover Herbicides insect pests labor mulches nitrogen No tillage organic Organic farming Organic gardening organic production perennial weeds plant density planters professionals Reduced-tillage researchers Rye Secale cereale Seed banks seeds Soil conservation soil fertility sowing Soybeans spring summer SYMPOSIUM Triticum aestivum Weed control Weeds wheat Zea mays |
title | Overcoming Weed Management Challenges in Cover Crop–Based Organic Rotational No-Till Soybean Production in the Eastern United States |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20Weed%20Management%20Challenges%20in%20Cover%20Crop%E2%80%93Based%20Organic%20Rotational%20No-Till%20Soybean%20Production%20in%20the%20Eastern%20United%20States&rft.jtitle=Weed%20technology&rft.au=Mirsky,%20Steven%20B&rft.date=2013-01-01&rft.volume=27&rft.issue=1&rft.spage=193&rft.epage=203&rft.pages=193-203&rft.issn=0890-037X&rft.eissn=1550-2740&rft_id=info:doi/10.1614/WT-D-12-00078.1&rft_dat=%3Cjstor_proqu%3E23358326%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326329988&rft_id=info:pmid/&rft_jstor_id=23358326&rfr_iscdi=true |