Monte-Carlo-Based Parametric Motion Estimation Using a Hybrid Model Approach

Parametric motion estimation is an important task for various video processing applications, such as analysis, segmentation, and coding. The process for such an estimation has to satisfy three requirements. It has to be fast, accurate, and robust in the presence of arbitrarily moving foreground obje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2013-04, Vol.23 (4), p.607-620
Hauptverfasser: Tok, M., Glantz, A., Krutz, A., Sikora, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue 4
container_start_page 607
container_title IEEE transactions on circuits and systems for video technology
container_volume 23
creator Tok, M.
Glantz, A.
Krutz, A.
Sikora, T.
description Parametric motion estimation is an important task for various video processing applications, such as analysis, segmentation, and coding. The process for such an estimation has to satisfy three requirements. It has to be fast, accurate, and robust in the presence of arbitrarily moving foreground objects. We introduce a two-step simplification scheme, suitable for Monte-Carlo-based perspective motion model estimation. For complexity reduction, the Helmholtz tradeoff estimator as well as random sample consensus are enhanced with this scheme and applied on Kanade-Lucas-Tomasi features as well as on video stream macroblock motion vector fields. For the feature-based estimation, good trackable features are detected and tracked on raw video sequences. For the block-based approach, motion vector fields from encoded H.264/AVC video streams are used. Results indicate that the complexity of the whole estimation process can be reduced by a factor of up to 10000 compared to state-of-the-art methods without losing estimation precision.
doi_str_mv 10.1109/TCSVT.2012.2211173
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1325541966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6257457</ieee_id><sourcerecordid>1365127269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-4a04774b8fa4c079dda298d1906bacfdbb0d47ed780234e764fd134dfb9aea063</originalsourceid><addsrcrecordid>eNpdkE9PwzAMxSsEEmPwBeBSCSFx6YjTpEmPYxoMaRNIbFwrN0mhU9eMpDvs25P90Q6c_CT__Gy_KLoFMgAg-dN89Pk1H1ACdEApAIj0LOoB5zKhlPDzoAmHRFLgl9GV90tCgEkmetF0ZtvOJCN0jU2e0Rsdf6DDlelcreKZ7WrbxmPf1Svcy4Wv2-8Y48m2dLUOgDZNPFyvnUX1cx1dVNh4c3Os_WjxMp6PJsn0_fVtNJwmKuWySxgSJgQrZYVMEZFrjTSXGnKSlagqXZZEM2G0kISmzIiMVRpSpqsyR4MkS_vR48E3rP3dGN8Vq9or0zTYGrvxBaQZBypolgf0_h-6tBvXhusCRTlnkGc7Q3qglLPeO1MVaxc-dtsCSLELuNgHXOwCLo4Bh6GHozV6hU3lsFW1P02G_TKlmQzc3YGrjTGndka5YFykf5P_gxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325541966</pqid></control><display><type>article</type><title>Monte-Carlo-Based Parametric Motion Estimation Using a Hybrid Model Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Tok, M. ; Glantz, A. ; Krutz, A. ; Sikora, T.</creator><creatorcontrib>Tok, M. ; Glantz, A. ; Krutz, A. ; Sikora, T.</creatorcontrib><description>Parametric motion estimation is an important task for various video processing applications, such as analysis, segmentation, and coding. The process for such an estimation has to satisfy three requirements. It has to be fast, accurate, and robust in the presence of arbitrarily moving foreground objects. We introduce a two-step simplification scheme, suitable for Monte-Carlo-based perspective motion model estimation. For complexity reduction, the Helmholtz tradeoff estimator as well as random sample consensus are enhanced with this scheme and applied on Kanade-Lucas-Tomasi features as well as on video stream macroblock motion vector fields. For the feature-based estimation, good trackable features are detected and tracked on raw video sequences. For the block-based approach, motion vector fields from encoded H.264/AVC video streams are used. Results indicate that the complexity of the whole estimation process can be reduced by a factor of up to 10000 compared to state-of-the-art methods without losing estimation precision.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2012.2211173</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Complexity ; Detection, estimation, filtering, equalization, prediction ; Estimation ; Exact sciences and technology ; Global motion model ; Helmholtz tradeoff estimator ; Image processing ; Information, signal and communications theory ; Mathematical analysis ; Mathematical model ; Monte Carlo methods ; Monte-Carlo method ; Motion estimation ; Motion simulation ; parametric motion estimation ; robust regression ; Robustness ; Segmentation ; Signal and communications theory ; Signal processing ; Signal, noise ; Sprites (computer) ; Streams ; Studies ; Telecommunications and information theory ; Vectors ; Vectors (mathematics) ; Video</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2013-04, Vol.23 (4), p.607-620</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-4a04774b8fa4c079dda298d1906bacfdbb0d47ed780234e764fd134dfb9aea063</citedby><cites>FETCH-LOGICAL-c358t-4a04774b8fa4c079dda298d1906bacfdbb0d47ed780234e764fd134dfb9aea063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6257457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6257457$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27283268$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tok, M.</creatorcontrib><creatorcontrib>Glantz, A.</creatorcontrib><creatorcontrib>Krutz, A.</creatorcontrib><creatorcontrib>Sikora, T.</creatorcontrib><title>Monte-Carlo-Based Parametric Motion Estimation Using a Hybrid Model Approach</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Parametric motion estimation is an important task for various video processing applications, such as analysis, segmentation, and coding. The process for such an estimation has to satisfy three requirements. It has to be fast, accurate, and robust in the presence of arbitrarily moving foreground objects. We introduce a two-step simplification scheme, suitable for Monte-Carlo-based perspective motion model estimation. For complexity reduction, the Helmholtz tradeoff estimator as well as random sample consensus are enhanced with this scheme and applied on Kanade-Lucas-Tomasi features as well as on video stream macroblock motion vector fields. For the feature-based estimation, good trackable features are detected and tracked on raw video sequences. For the block-based approach, motion vector fields from encoded H.264/AVC video streams are used. Results indicate that the complexity of the whole estimation process can be reduced by a factor of up to 10000 compared to state-of-the-art methods without losing estimation precision.</description><subject>Applied sciences</subject><subject>Complexity</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Global motion model</subject><subject>Helmholtz tradeoff estimator</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Monte Carlo methods</subject><subject>Monte-Carlo method</subject><subject>Motion estimation</subject><subject>Motion simulation</subject><subject>parametric motion estimation</subject><subject>robust regression</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Sprites (computer)</subject><subject>Streams</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><subject>Video</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9PwzAMxSsEEmPwBeBSCSFx6YjTpEmPYxoMaRNIbFwrN0mhU9eMpDvs25P90Q6c_CT__Gy_KLoFMgAg-dN89Pk1H1ACdEApAIj0LOoB5zKhlPDzoAmHRFLgl9GV90tCgEkmetF0ZtvOJCN0jU2e0Rsdf6DDlelcreKZ7WrbxmPf1Svcy4Wv2-8Y48m2dLUOgDZNPFyvnUX1cx1dVNh4c3Os_WjxMp6PJsn0_fVtNJwmKuWySxgSJgQrZYVMEZFrjTSXGnKSlagqXZZEM2G0kISmzIiMVRpSpqsyR4MkS_vR48E3rP3dGN8Vq9or0zTYGrvxBaQZBypolgf0_h-6tBvXhusCRTlnkGc7Q3qglLPeO1MVaxc-dtsCSLELuNgHXOwCLo4Bh6GHozV6hU3lsFW1P02G_TKlmQzc3YGrjTGndka5YFykf5P_gxc</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Tok, M.</creator><creator>Glantz, A.</creator><creator>Krutz, A.</creator><creator>Sikora, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130401</creationdate><title>Monte-Carlo-Based Parametric Motion Estimation Using a Hybrid Model Approach</title><author>Tok, M. ; Glantz, A. ; Krutz, A. ; Sikora, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-4a04774b8fa4c079dda298d1906bacfdbb0d47ed780234e764fd134dfb9aea063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Complexity</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Global motion model</topic><topic>Helmholtz tradeoff estimator</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Monte Carlo methods</topic><topic>Monte-Carlo method</topic><topic>Motion estimation</topic><topic>Motion simulation</topic><topic>parametric motion estimation</topic><topic>robust regression</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Sprites (computer)</topic><topic>Streams</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tok, M.</creatorcontrib><creatorcontrib>Glantz, A.</creatorcontrib><creatorcontrib>Krutz, A.</creatorcontrib><creatorcontrib>Sikora, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tok, M.</au><au>Glantz, A.</au><au>Krutz, A.</au><au>Sikora, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte-Carlo-Based Parametric Motion Estimation Using a Hybrid Model Approach</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>23</volume><issue>4</issue><spage>607</spage><epage>620</epage><pages>607-620</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Parametric motion estimation is an important task for various video processing applications, such as analysis, segmentation, and coding. The process for such an estimation has to satisfy three requirements. It has to be fast, accurate, and robust in the presence of arbitrarily moving foreground objects. We introduce a two-step simplification scheme, suitable for Monte-Carlo-based perspective motion model estimation. For complexity reduction, the Helmholtz tradeoff estimator as well as random sample consensus are enhanced with this scheme and applied on Kanade-Lucas-Tomasi features as well as on video stream macroblock motion vector fields. For the feature-based estimation, good trackable features are detected and tracked on raw video sequences. For the block-based approach, motion vector fields from encoded H.264/AVC video streams are used. Results indicate that the complexity of the whole estimation process can be reduced by a factor of up to 10000 compared to state-of-the-art methods without losing estimation precision.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2012.2211173</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2013-04, Vol.23 (4), p.607-620
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_1325541966
source IEEE Electronic Library (IEL)
subjects Applied sciences
Complexity
Detection, estimation, filtering, equalization, prediction
Estimation
Exact sciences and technology
Global motion model
Helmholtz tradeoff estimator
Image processing
Information, signal and communications theory
Mathematical analysis
Mathematical model
Monte Carlo methods
Monte-Carlo method
Motion estimation
Motion simulation
parametric motion estimation
robust regression
Robustness
Segmentation
Signal and communications theory
Signal processing
Signal, noise
Sprites (computer)
Streams
Studies
Telecommunications and information theory
Vectors
Vectors (mathematics)
Video
title Monte-Carlo-Based Parametric Motion Estimation Using a Hybrid Model Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte-Carlo-Based%20Parametric%20Motion%20Estimation%20Using%20a%20Hybrid%20Model%20Approach&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Tok,%20M.&rft.date=2013-04-01&rft.volume=23&rft.issue=4&rft.spage=607&rft.epage=620&rft.pages=607-620&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2012.2211173&rft_dat=%3Cproquest_RIE%3E1365127269%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325541966&rft_id=info:pmid/&rft_ieee_id=6257457&rfr_iscdi=true