Unified Blind Method for Multi-Image Super-Resolution and Single/Multi-Image Blur Deconvolution
This paper presents, for the first time, a unified blind method for multi-image super-resolution (MISR or SR), single-image blur deconvolution (SIBD), and multi-image blur deconvolution (MIBD) of low-resolution (LR) images degraded by linear space-invariant (LSI) blur, aliasing, and additive white G...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2013-06, Vol.22 (6), p.2101-2114 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2114 |
---|---|
container_issue | 6 |
container_start_page | 2101 |
container_title | IEEE transactions on image processing |
container_volume | 22 |
creator | Faramarzi, E. Rajan, D. Christensen, M. P. |
description | This paper presents, for the first time, a unified blind method for multi-image super-resolution (MISR or SR), single-image blur deconvolution (SIBD), and multi-image blur deconvolution (MIBD) of low-resolution (LR) images degraded by linear space-invariant (LSI) blur, aliasing, and additive white Gaussian noise (AWGN). The proposed approach is based on alternating minimization (AM) of a new cost function with respect to the unknown high-resolution (HR) image and blurs. The regularization term for the HR image is based upon the Huber-Markov random field (HMRF) model, which is a type of variational integral that exploits the piecewise smooth nature of the HR image. The blur estimation process is supported by an edge-emphasizing smoothing operation, which improves the quality of blur estimates by enhancing strong soft edges toward step edges, while filtering out weak structures. The parameters are updated gradually so that the number of salient edges used for blur estimation increases at each iteration. For better performance, the blur estimation is done in the filter domain rather than the pixel domain, i.e., using the gradients of the LR and HR images. The regularization term for the blur is Gaussian (L2 norm), which allows for fast noniterative optimization in the frequency domain. We accelerate the processing time of SR reconstruction by separating the upsampling and registration processes from the optimization procedure. Simulation results on both synthetic and real-life images (from a novel computational imager) confirm the robustness and effectiveness of the proposed method. |
doi_str_mv | 10.1109/TIP.2013.2237915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_1325372298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6408136</ieee_id><sourcerecordid>2941408591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-efd81781aef08bc2c84876afc8ec4bbbb4bc96d797cdd02d93a6f138bfc2ea6c3</originalsourceid><addsrcrecordid>eNqN0c9rFDEUB_Agiq3VuyDIgBcvs83Lj0nmaGvVhRbFtueQSV5qyuxkTWaE_vdm2bWIJ3NJIJ_34L0vIa-BrgBof3qz_rZiFPiKMa56kE_IMfQCWkoFe1rfVKpWgeiPyItS7ikFIaF7To4Y5yCUksfE3E4xRPTN2Rgn31zh_CP5JqTcXC3jHNv1xt5hc71sMbffsaRxmWOaGlvtdZzuRjz9252NS24-okvTr4N8SZ4FOxZ8dbhPyO2ni5vzL-3l18_r8w-XrZNczi0Gr0FpsBioHhxzWmjV2eA0OjHUIwbXd171ynlPme-57QJwPQTH0HaOn5D3-77bnH4uWGazicXhONoJ01IM8E4CU1LQ_6C7ZXZc80rf_UPv05KnOshOSa4Y63VVdK9cTqVkDGab48bmBwPU7HIyNSezy8kccqolbw-Nl2GD_rHgTzAVvNmDiIiP352guk7CfwM7cZaO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325372298</pqid></control><display><type>article</type><title>Unified Blind Method for Multi-Image Super-Resolution and Single/Multi-Image Blur Deconvolution</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Faramarzi, E. ; Rajan, D. ; Christensen, M. P.</creator><creatorcontrib>Faramarzi, E. ; Rajan, D. ; Christensen, M. P.</creatorcontrib><description>This paper presents, for the first time, a unified blind method for multi-image super-resolution (MISR or SR), single-image blur deconvolution (SIBD), and multi-image blur deconvolution (MIBD) of low-resolution (LR) images degraded by linear space-invariant (LSI) blur, aliasing, and additive white Gaussian noise (AWGN). The proposed approach is based on alternating minimization (AM) of a new cost function with respect to the unknown high-resolution (HR) image and blurs. The regularization term for the HR image is based upon the Huber-Markov random field (HMRF) model, which is a type of variational integral that exploits the piecewise smooth nature of the HR image. The blur estimation process is supported by an edge-emphasizing smoothing operation, which improves the quality of blur estimates by enhancing strong soft edges toward step edges, while filtering out weak structures. The parameters are updated gradually so that the number of salient edges used for blur estimation increases at each iteration. For better performance, the blur estimation is done in the filter domain rather than the pixel domain, i.e., using the gradients of the LR and HR images. The regularization term for the blur is Gaussian (L2 norm), which allows for fast noniterative optimization in the frequency domain. We accelerate the processing time of SR reconstruction by separating the upsampling and registration processes from the optimization procedure. Simulation results on both synthetic and real-life images (from a novel computational imager) confirm the robustness and effectiveness of the proposed method.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2237915</identifier><identifier>PMID: 23314775</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; Blind estimation ; Blinds ; blur deconvolution ; Computer Simulation ; Cost function ; Deconvolution ; Diagnostic Imaging ; Estimation ; Filtering ; Gaussian ; Huber-Markov Random Field (HMRF) prior ; Humans ; Image edge detection ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Image resolution ; image restoration ; Markov Chains ; Noise ; Optimization ; Phantoms, Imaging ; Photography ; Regularization ; Smoothing methods ; Studies ; super-resolution</subject><ispartof>IEEE transactions on image processing, 2013-06, Vol.22 (6), p.2101-2114</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-efd81781aef08bc2c84876afc8ec4bbbb4bc96d797cdd02d93a6f138bfc2ea6c3</citedby><cites>FETCH-LOGICAL-c535t-efd81781aef08bc2c84876afc8ec4bbbb4bc96d797cdd02d93a6f138bfc2ea6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6408136$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23314775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faramarzi, E.</creatorcontrib><creatorcontrib>Rajan, D.</creatorcontrib><creatorcontrib>Christensen, M. P.</creatorcontrib><title>Unified Blind Method for Multi-Image Super-Resolution and Single/Multi-Image Blur Deconvolution</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper presents, for the first time, a unified blind method for multi-image super-resolution (MISR or SR), single-image blur deconvolution (SIBD), and multi-image blur deconvolution (MIBD) of low-resolution (LR) images degraded by linear space-invariant (LSI) blur, aliasing, and additive white Gaussian noise (AWGN). The proposed approach is based on alternating minimization (AM) of a new cost function with respect to the unknown high-resolution (HR) image and blurs. The regularization term for the HR image is based upon the Huber-Markov random field (HMRF) model, which is a type of variational integral that exploits the piecewise smooth nature of the HR image. The blur estimation process is supported by an edge-emphasizing smoothing operation, which improves the quality of blur estimates by enhancing strong soft edges toward step edges, while filtering out weak structures. The parameters are updated gradually so that the number of salient edges used for blur estimation increases at each iteration. For better performance, the blur estimation is done in the filter domain rather than the pixel domain, i.e., using the gradients of the LR and HR images. The regularization term for the blur is Gaussian (L2 norm), which allows for fast noniterative optimization in the frequency domain. We accelerate the processing time of SR reconstruction by separating the upsampling and registration processes from the optimization procedure. Simulation results on both synthetic and real-life images (from a novel computational imager) confirm the robustness and effectiveness of the proposed method.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Blind estimation</subject><subject>Blinds</subject><subject>blur deconvolution</subject><subject>Computer Simulation</subject><subject>Cost function</subject><subject>Deconvolution</subject><subject>Diagnostic Imaging</subject><subject>Estimation</subject><subject>Filtering</subject><subject>Gaussian</subject><subject>Huber-Markov Random Field (HMRF) prior</subject><subject>Humans</subject><subject>Image edge detection</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>image restoration</subject><subject>Markov Chains</subject><subject>Noise</subject><subject>Optimization</subject><subject>Phantoms, Imaging</subject><subject>Photography</subject><subject>Regularization</subject><subject>Smoothing methods</subject><subject>Studies</subject><subject>super-resolution</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqN0c9rFDEUB_Agiq3VuyDIgBcvs83Lj0nmaGvVhRbFtueQSV5qyuxkTWaE_vdm2bWIJ3NJIJ_34L0vIa-BrgBof3qz_rZiFPiKMa56kE_IMfQCWkoFe1rfVKpWgeiPyItS7ikFIaF7To4Y5yCUksfE3E4xRPTN2Rgn31zh_CP5JqTcXC3jHNv1xt5hc71sMbffsaRxmWOaGlvtdZzuRjz9252NS24-okvTr4N8SZ4FOxZ8dbhPyO2ni5vzL-3l18_r8w-XrZNczi0Gr0FpsBioHhxzWmjV2eA0OjHUIwbXd171ynlPme-57QJwPQTH0HaOn5D3-77bnH4uWGazicXhONoJ01IM8E4CU1LQ_6C7ZXZc80rf_UPv05KnOshOSa4Y63VVdK9cTqVkDGab48bmBwPU7HIyNSezy8kccqolbw-Nl2GD_rHgTzAVvNmDiIiP352guk7CfwM7cZaO</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Faramarzi, E.</creator><creator>Rajan, D.</creator><creator>Christensen, M. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Unified Blind Method for Multi-Image Super-Resolution and Single/Multi-Image Blur Deconvolution</title><author>Faramarzi, E. ; Rajan, D. ; Christensen, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-efd81781aef08bc2c84876afc8ec4bbbb4bc96d797cdd02d93a6f138bfc2ea6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Blind estimation</topic><topic>Blinds</topic><topic>blur deconvolution</topic><topic>Computer Simulation</topic><topic>Cost function</topic><topic>Deconvolution</topic><topic>Diagnostic Imaging</topic><topic>Estimation</topic><topic>Filtering</topic><topic>Gaussian</topic><topic>Huber-Markov Random Field (HMRF) prior</topic><topic>Humans</topic><topic>Image edge detection</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>image restoration</topic><topic>Markov Chains</topic><topic>Noise</topic><topic>Optimization</topic><topic>Phantoms, Imaging</topic><topic>Photography</topic><topic>Regularization</topic><topic>Smoothing methods</topic><topic>Studies</topic><topic>super-resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faramarzi, E.</creatorcontrib><creatorcontrib>Rajan, D.</creatorcontrib><creatorcontrib>Christensen, M. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faramarzi, E.</au><au>Rajan, D.</au><au>Christensen, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified Blind Method for Multi-Image Super-Resolution and Single/Multi-Image Blur Deconvolution</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>22</volume><issue>6</issue><spage>2101</spage><epage>2114</epage><pages>2101-2114</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper presents, for the first time, a unified blind method for multi-image super-resolution (MISR or SR), single-image blur deconvolution (SIBD), and multi-image blur deconvolution (MIBD) of low-resolution (LR) images degraded by linear space-invariant (LSI) blur, aliasing, and additive white Gaussian noise (AWGN). The proposed approach is based on alternating minimization (AM) of a new cost function with respect to the unknown high-resolution (HR) image and blurs. The regularization term for the HR image is based upon the Huber-Markov random field (HMRF) model, which is a type of variational integral that exploits the piecewise smooth nature of the HR image. The blur estimation process is supported by an edge-emphasizing smoothing operation, which improves the quality of blur estimates by enhancing strong soft edges toward step edges, while filtering out weak structures. The parameters are updated gradually so that the number of salient edges used for blur estimation increases at each iteration. For better performance, the blur estimation is done in the filter domain rather than the pixel domain, i.e., using the gradients of the LR and HR images. The regularization term for the blur is Gaussian (L2 norm), which allows for fast noniterative optimization in the frequency domain. We accelerate the processing time of SR reconstruction by separating the upsampling and registration processes from the optimization procedure. Simulation results on both synthetic and real-life images (from a novel computational imager) confirm the robustness and effectiveness of the proposed method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23314775</pmid><doi>10.1109/TIP.2013.2237915</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2013-06, Vol.22 (6), p.2101-2114 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_1325372298 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Algorithms Animals Blind estimation Blinds blur deconvolution Computer Simulation Cost function Deconvolution Diagnostic Imaging Estimation Filtering Gaussian Huber-Markov Random Field (HMRF) prior Humans Image edge detection Image Processing, Computer-Assisted - methods Image reconstruction Image resolution image restoration Markov Chains Noise Optimization Phantoms, Imaging Photography Regularization Smoothing methods Studies super-resolution |
title | Unified Blind Method for Multi-Image Super-Resolution and Single/Multi-Image Blur Deconvolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20Blind%20Method%20for%20Multi-Image%20Super-Resolution%20and%20Single/Multi-Image%20Blur%20Deconvolution&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Faramarzi,%20E.&rft.date=2013-06-01&rft.volume=22&rft.issue=6&rft.spage=2101&rft.epage=2114&rft.pages=2101-2114&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2237915&rft_dat=%3Cproquest_pubme%3E2941408591%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325372298&rft_id=info:pmid/23314775&rft_ieee_id=6408136&rfr_iscdi=true |