Insight into Participation of Generating Sources in the Energy Supply to Loads

Under the market economy conditions every producer should know the proportion of electrical energy to be delivered to a concrete load and the energy losses that arise at delivery. Any network is characterised by such parameters as loads, generated power, power from slack buses, flows in its branches...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Latvian journal of physics and technical sciences 2010-01, Vol.47 (1), p.30-46
Hauptverfasser: Survilo, J., Strelkovs, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 1
container_start_page 30
container_title Latvian journal of physics and technical sciences
container_volume 47
creator Survilo, J.
Strelkovs, V.
description Under the market economy conditions every producer should know the proportion of electrical energy to be delivered to a concrete load and the energy losses that arise at delivery. Any network is characterised by such parameters as loads, generated power, power from slack buses, flows in its branches, etc., which can be determined by computer programs, e.g. Mustang or Power World. However, these programs do not compute the share of a particular power plant (PP) in supplying a particular load, since the PPs can be involved in the load delivery in different proportions, without changing the input information on the generated power, loads and branch flows. Therefore, solution of this problem is not purely technical, and many alternative solutions are proposed, the most important among them being based on the principle of proportionality. This principle is in conflict with the notion of the injection node. If the share of a PP in the load coverage is not known, the flow of this plant in the network branches is also unknown. In the paper, it is proposed to take into account the admittance from a PP to the load, calculating the load share to be covered by this plant. The current from a PP to the load should be calculated proportionally to the admittance of the path to load, after which the admittance of the involved power line attached to a PP is determined. Such admittances take into account not only impedances of these lines but also the currents flowing from other PPs and can be calculated when in the lines not only collinear but also differing in phase currents flow; in the latter case the angle between the currents is accounted for. In such a manner, the load coverage quotient is determined that shows the load coverage to be shared by a given PP. All coverage quotients known, the address coefficients for all PPs can be calculated. This method allows more realistic calculation of the flows from PPs in a particular power line. The losses of a given PP are found by well-known formulas, assuming that a definite proportion of the phase conductor cross-section of a given line belongs to a given PP. This proportion is found taking into account all the flows in this line. Tirgus ekonomikas apstāklos katrai elektrostacijai jāzina, kādu elektro-energijas daļu tā piegādā konkrētai slodzei un kādi energijas zudumi tai ir, piegādājot šo slodzi. Konkrētam tīklam ir zināmas slodzes un generēta jauda, jauda no bilances mezgla, arī jaudas plūsmas tīkla zaros, jo šos lielumus
doi_str_mv 10.2478/v10047-010-0002-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1323372547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2935630741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-576c75595f19dc9dc0d72fed7a70c33291b13d30a851e98bbc810b33952454e53</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMoWKs_wLeAz9HJffdRStXi4oVWfAzZ3Wy7te6uSSr235tSEQaGYc45M3wIXVK4ZkJnN98UQGgCFAgAMCKP0IjRPCeKSnWMRpCpjGRM6lN0FsIaQFEuxAg9zbrQLlcRt13s8Yv1sa3awca273Df4HvXOZ-mbonn_dZXLiQhjiuHp2mx3OH5dhg2O5y8RW_rcI5OGrsJ7uKvj9Hb3XQxeSDF8_1scluQioOKRGpVaSlz2dC8rlJBrVnjam01VJyznJaU1xxsJqnLs7KsMgol57lkQgon-RhdHXIH339tXYhmnd7r0klDOeNcMyl0UtGDqvJ9CN41ZvDtp_U7Q8HssZkDNpOwmT02s08mB08bovv5N1j_YZTmWprXhTCFnEv1_gim4L8U1W3u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323372547</pqid></control><display><type>article</type><title>Insight into Participation of Generating Sources in the Energy Supply to Loads</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Survilo, J. ; Strelkovs, V.</creator><creatorcontrib>Survilo, J. ; Strelkovs, V.</creatorcontrib><description>Under the market economy conditions every producer should know the proportion of electrical energy to be delivered to a concrete load and the energy losses that arise at delivery. Any network is characterised by such parameters as loads, generated power, power from slack buses, flows in its branches, etc., which can be determined by computer programs, e.g. Mustang or Power World. However, these programs do not compute the share of a particular power plant (PP) in supplying a particular load, since the PPs can be involved in the load delivery in different proportions, without changing the input information on the generated power, loads and branch flows. Therefore, solution of this problem is not purely technical, and many alternative solutions are proposed, the most important among them being based on the principle of proportionality. This principle is in conflict with the notion of the injection node. If the share of a PP in the load coverage is not known, the flow of this plant in the network branches is also unknown. In the paper, it is proposed to take into account the admittance from a PP to the load, calculating the load share to be covered by this plant. The current from a PP to the load should be calculated proportionally to the admittance of the path to load, after which the admittance of the involved power line attached to a PP is determined. Such admittances take into account not only impedances of these lines but also the currents flowing from other PPs and can be calculated when in the lines not only collinear but also differing in phase currents flow; in the latter case the angle between the currents is accounted for. In such a manner, the load coverage quotient is determined that shows the load coverage to be shared by a given PP. All coverage quotients known, the address coefficients for all PPs can be calculated. This method allows more realistic calculation of the flows from PPs in a particular power line. The losses of a given PP are found by well-known formulas, assuming that a definite proportion of the phase conductor cross-section of a given line belongs to a given PP. This proportion is found taking into account all the flows in this line. Tirgus ekonomikas apstāklos katrai elektrostacijai jāzina, kādu elektro-energijas daļu tā piegādā konkrētai slodzei un kādi energijas zudumi tai ir, piegādājot šo slodzi. Konkrētam tīklam ir zināmas slodzes un generēta jauda, jauda no bilances mezgla, arī jaudas plūsmas tīkla zaros, jo šos lielumus var aprēķināt pēc datorprogrammām, piemēram, "Mustangs" vai "Power world". Bet cik no kādas elektrostacijas pienākas jaudas konkrētai slodzei, to programmas nerēķina, jo jaudu no elektrostacijām var pārdalīt starp slodzēm vairākos variantos un no tā elektrotehniskie vienādojumi, kas izmantoti plūsmu aprēķinam, nemainās. Tas norāda uz to, ka šeit nav tīri tehniska risinājuma. Tieši tāpēc šajā jomā ir tik daudz piedāvājumu. Vissvarīgākais starp tiem ir proporcionalitātes princips. Bet šis princips ne vienmēr ir logisks, tas nesader ar injekcijas mezgla jēdzienu. Bet, ja elektrostacijas piedalīšanās daļa slodzes jaudas segšanā nav zināma, tad nav zināma arī šīs elektrostacijas plūsma tīkla zaros, secīgi nav zināmi arī šīs elektrostacijas zudumi šajā zarā. Rakstā tiek piedāvāts ņemt vērā pilno vadāmību no spēkstacijas līdz slodzei, kuru baro elektrostacija. Spēkstacijas strāva uz slodzi jārēķina proporcionāli pilnai vadāmībai no spēkstacijas līdz slodzei. Rēķinot pilno vadāmību, nepieciešams izrēķināt nosacītas iesaistīto līniju vadāmības. Nosacītas vadāmības ņem vērā ne tikai šo līniju pilnas vadāmības, bet arī strāvas, kas plūst pa šīm līnijām no citām spēkstacijām. Nosacītas pretestības var būt izrēķinātas ne tikai, kad strāvas līnijā ir kolineārās, bet arī tad, kad šīs strāvas nesakrīt fāzē, pēdējā gadījumā jāņem vērā leņķis starp strāvām. Tādā veidā tiek noteikts slodzes segšanas koeficients, kas rāda to slodzes daļu, kas ir segta no attiecīgās spēkstacijas. Kad visi segšanas koeficienti ir aprēķināti, var noteikt adresācijas koeficientus visām spēkstacijām. Šī metode ļauj atrast precīzāku attiecīgās spēkstacijas plūsmu konkrētajā līnijā. Attiecīgas spēkstacijas zudumi jārēķina pēc zināmām formulām, pieņemot, ka noteiktā fāzes vada šķērsgriezuma laukuma daļa pieder izskatāmai spēkstacijai. Šī daļa tiek rēķināta, ņemot vērā visas plūsmas šajā līnijā.</description><identifier>ISSN: 0868-8257</identifier><identifier>EISSN: 2199-6156</identifier><identifier>DOI: 10.2478/v10047-010-0002-5</identifier><language>eng</language><publisher>Riga: Versita</publisher><subject>charges for electricity loss ; electricity consumer ; load flow ; loss allocation ; power losses ; power plant (PP)</subject><ispartof>Latvian journal of physics and technical sciences, 2010-01, Vol.47 (1), p.30-46</ispartof><rights>Copyright Versita Jan 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-576c75595f19dc9dc0d72fed7a70c33291b13d30a851e98bbc810b33952454e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Survilo, J.</creatorcontrib><creatorcontrib>Strelkovs, V.</creatorcontrib><title>Insight into Participation of Generating Sources in the Energy Supply to Loads</title><title>Latvian journal of physics and technical sciences</title><description>Under the market economy conditions every producer should know the proportion of electrical energy to be delivered to a concrete load and the energy losses that arise at delivery. Any network is characterised by such parameters as loads, generated power, power from slack buses, flows in its branches, etc., which can be determined by computer programs, e.g. Mustang or Power World. However, these programs do not compute the share of a particular power plant (PP) in supplying a particular load, since the PPs can be involved in the load delivery in different proportions, without changing the input information on the generated power, loads and branch flows. Therefore, solution of this problem is not purely technical, and many alternative solutions are proposed, the most important among them being based on the principle of proportionality. This principle is in conflict with the notion of the injection node. If the share of a PP in the load coverage is not known, the flow of this plant in the network branches is also unknown. In the paper, it is proposed to take into account the admittance from a PP to the load, calculating the load share to be covered by this plant. The current from a PP to the load should be calculated proportionally to the admittance of the path to load, after which the admittance of the involved power line attached to a PP is determined. Such admittances take into account not only impedances of these lines but also the currents flowing from other PPs and can be calculated when in the lines not only collinear but also differing in phase currents flow; in the latter case the angle between the currents is accounted for. In such a manner, the load coverage quotient is determined that shows the load coverage to be shared by a given PP. All coverage quotients known, the address coefficients for all PPs can be calculated. This method allows more realistic calculation of the flows from PPs in a particular power line. The losses of a given PP are found by well-known formulas, assuming that a definite proportion of the phase conductor cross-section of a given line belongs to a given PP. This proportion is found taking into account all the flows in this line. Tirgus ekonomikas apstāklos katrai elektrostacijai jāzina, kādu elektro-energijas daļu tā piegādā konkrētai slodzei un kādi energijas zudumi tai ir, piegādājot šo slodzi. Konkrētam tīklam ir zināmas slodzes un generēta jauda, jauda no bilances mezgla, arī jaudas plūsmas tīkla zaros, jo šos lielumus var aprēķināt pēc datorprogrammām, piemēram, "Mustangs" vai "Power world". Bet cik no kādas elektrostacijas pienākas jaudas konkrētai slodzei, to programmas nerēķina, jo jaudu no elektrostacijām var pārdalīt starp slodzēm vairākos variantos un no tā elektrotehniskie vienādojumi, kas izmantoti plūsmu aprēķinam, nemainās. Tas norāda uz to, ka šeit nav tīri tehniska risinājuma. Tieši tāpēc šajā jomā ir tik daudz piedāvājumu. Vissvarīgākais starp tiem ir proporcionalitātes princips. Bet šis princips ne vienmēr ir logisks, tas nesader ar injekcijas mezgla jēdzienu. Bet, ja elektrostacijas piedalīšanās daļa slodzes jaudas segšanā nav zināma, tad nav zināma arī šīs elektrostacijas plūsma tīkla zaros, secīgi nav zināmi arī šīs elektrostacijas zudumi šajā zarā. Rakstā tiek piedāvāts ņemt vērā pilno vadāmību no spēkstacijas līdz slodzei, kuru baro elektrostacija. Spēkstacijas strāva uz slodzi jārēķina proporcionāli pilnai vadāmībai no spēkstacijas līdz slodzei. Rēķinot pilno vadāmību, nepieciešams izrēķināt nosacītas iesaistīto līniju vadāmības. Nosacītas vadāmības ņem vērā ne tikai šo līniju pilnas vadāmības, bet arī strāvas, kas plūst pa šīm līnijām no citām spēkstacijām. Nosacītas pretestības var būt izrēķinātas ne tikai, kad strāvas līnijā ir kolineārās, bet arī tad, kad šīs strāvas nesakrīt fāzē, pēdējā gadījumā jāņem vērā leņķis starp strāvām. Tādā veidā tiek noteikts slodzes segšanas koeficients, kas rāda to slodzes daļu, kas ir segta no attiecīgās spēkstacijas. Kad visi segšanas koeficienti ir aprēķināti, var noteikt adresācijas koeficientus visām spēkstacijām. Šī metode ļauj atrast precīzāku attiecīgās spēkstacijas plūsmu konkrētajā līnijā. Attiecīgas spēkstacijas zudumi jārēķina pēc zināmām formulām, pieņemot, ka noteiktā fāzes vada šķērsgriezuma laukuma daļa pieder izskatāmai spēkstacijai. Šī daļa tiek rēķināta, ņemot vērā visas plūsmas šajā līnijā.</description><subject>charges for electricity loss</subject><subject>electricity consumer</subject><subject>load flow</subject><subject>loss allocation</subject><subject>power losses</subject><subject>power plant (PP)</subject><issn>0868-8257</issn><issn>2199-6156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kFtLAzEQhYMoWKs_wLeAz9HJffdRStXi4oVWfAzZ3Wy7te6uSSr235tSEQaGYc45M3wIXVK4ZkJnN98UQGgCFAgAMCKP0IjRPCeKSnWMRpCpjGRM6lN0FsIaQFEuxAg9zbrQLlcRt13s8Yv1sa3awca273Df4HvXOZ-mbonn_dZXLiQhjiuHp2mx3OH5dhg2O5y8RW_rcI5OGrsJ7uKvj9Hb3XQxeSDF8_1scluQioOKRGpVaSlz2dC8rlJBrVnjam01VJyznJaU1xxsJqnLs7KsMgol57lkQgon-RhdHXIH339tXYhmnd7r0klDOeNcMyl0UtGDqvJ9CN41ZvDtp_U7Q8HssZkDNpOwmT02s08mB08bovv5N1j_YZTmWprXhTCFnEv1_gim4L8U1W3u</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Survilo, J.</creator><creator>Strelkovs, V.</creator><general>Versita</general><general>De Gruyter Poland</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20100101</creationdate><title>Insight into Participation of Generating Sources in the Energy Supply to Loads</title><author>Survilo, J. ; Strelkovs, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-576c75595f19dc9dc0d72fed7a70c33291b13d30a851e98bbc810b33952454e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>charges for electricity loss</topic><topic>electricity consumer</topic><topic>load flow</topic><topic>loss allocation</topic><topic>power losses</topic><topic>power plant (PP)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Survilo, J.</creatorcontrib><creatorcontrib>Strelkovs, V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Latvian journal of physics and technical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Survilo, J.</au><au>Strelkovs, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into Participation of Generating Sources in the Energy Supply to Loads</atitle><jtitle>Latvian journal of physics and technical sciences</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>47</volume><issue>1</issue><spage>30</spage><epage>46</epage><pages>30-46</pages><issn>0868-8257</issn><eissn>2199-6156</eissn><abstract>Under the market economy conditions every producer should know the proportion of electrical energy to be delivered to a concrete load and the energy losses that arise at delivery. Any network is characterised by such parameters as loads, generated power, power from slack buses, flows in its branches, etc., which can be determined by computer programs, e.g. Mustang or Power World. However, these programs do not compute the share of a particular power plant (PP) in supplying a particular load, since the PPs can be involved in the load delivery in different proportions, without changing the input information on the generated power, loads and branch flows. Therefore, solution of this problem is not purely technical, and many alternative solutions are proposed, the most important among them being based on the principle of proportionality. This principle is in conflict with the notion of the injection node. If the share of a PP in the load coverage is not known, the flow of this plant in the network branches is also unknown. In the paper, it is proposed to take into account the admittance from a PP to the load, calculating the load share to be covered by this plant. The current from a PP to the load should be calculated proportionally to the admittance of the path to load, after which the admittance of the involved power line attached to a PP is determined. Such admittances take into account not only impedances of these lines but also the currents flowing from other PPs and can be calculated when in the lines not only collinear but also differing in phase currents flow; in the latter case the angle between the currents is accounted for. In such a manner, the load coverage quotient is determined that shows the load coverage to be shared by a given PP. All coverage quotients known, the address coefficients for all PPs can be calculated. This method allows more realistic calculation of the flows from PPs in a particular power line. The losses of a given PP are found by well-known formulas, assuming that a definite proportion of the phase conductor cross-section of a given line belongs to a given PP. This proportion is found taking into account all the flows in this line. Tirgus ekonomikas apstāklos katrai elektrostacijai jāzina, kādu elektro-energijas daļu tā piegādā konkrētai slodzei un kādi energijas zudumi tai ir, piegādājot šo slodzi. Konkrētam tīklam ir zināmas slodzes un generēta jauda, jauda no bilances mezgla, arī jaudas plūsmas tīkla zaros, jo šos lielumus var aprēķināt pēc datorprogrammām, piemēram, "Mustangs" vai "Power world". Bet cik no kādas elektrostacijas pienākas jaudas konkrētai slodzei, to programmas nerēķina, jo jaudu no elektrostacijām var pārdalīt starp slodzēm vairākos variantos un no tā elektrotehniskie vienādojumi, kas izmantoti plūsmu aprēķinam, nemainās. Tas norāda uz to, ka šeit nav tīri tehniska risinājuma. Tieši tāpēc šajā jomā ir tik daudz piedāvājumu. Vissvarīgākais starp tiem ir proporcionalitātes princips. Bet šis princips ne vienmēr ir logisks, tas nesader ar injekcijas mezgla jēdzienu. Bet, ja elektrostacijas piedalīšanās daļa slodzes jaudas segšanā nav zināma, tad nav zināma arī šīs elektrostacijas plūsma tīkla zaros, secīgi nav zināmi arī šīs elektrostacijas zudumi šajā zarā. Rakstā tiek piedāvāts ņemt vērā pilno vadāmību no spēkstacijas līdz slodzei, kuru baro elektrostacija. Spēkstacijas strāva uz slodzi jārēķina proporcionāli pilnai vadāmībai no spēkstacijas līdz slodzei. Rēķinot pilno vadāmību, nepieciešams izrēķināt nosacītas iesaistīto līniju vadāmības. Nosacītas vadāmības ņem vērā ne tikai šo līniju pilnas vadāmības, bet arī strāvas, kas plūst pa šīm līnijām no citām spēkstacijām. Nosacītas pretestības var būt izrēķinātas ne tikai, kad strāvas līnijā ir kolineārās, bet arī tad, kad šīs strāvas nesakrīt fāzē, pēdējā gadījumā jāņem vērā leņķis starp strāvām. Tādā veidā tiek noteikts slodzes segšanas koeficients, kas rāda to slodzes daļu, kas ir segta no attiecīgās spēkstacijas. Kad visi segšanas koeficienti ir aprēķināti, var noteikt adresācijas koeficientus visām spēkstacijām. Šī metode ļauj atrast precīzāku attiecīgās spēkstacijas plūsmu konkrētajā līnijā. Attiecīgas spēkstacijas zudumi jārēķina pēc zināmām formulām, pieņemot, ka noteiktā fāzes vada šķērsgriezuma laukuma daļa pieder izskatāmai spēkstacijai. Šī daļa tiek rēķināta, ņemot vērā visas plūsmas šajā līnijā.</abstract><cop>Riga</cop><pub>Versita</pub><doi>10.2478/v10047-010-0002-5</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0868-8257
ispartof Latvian journal of physics and technical sciences, 2010-01, Vol.47 (1), p.30-46
issn 0868-8257
2199-6156
language eng
recordid cdi_proquest_journals_1323372547
source EZB-FREE-00999 freely available EZB journals
subjects charges for electricity loss
electricity consumer
load flow
loss allocation
power losses
power plant (PP)
title Insight into Participation of Generating Sources in the Energy Supply to Loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20Participation%20of%20Generating%20Sources%20in%20the%20Energy%20Supply%20to%20Loads&rft.jtitle=Latvian%20journal%20of%20physics%20and%20technical%20sciences&rft.au=Survilo,%20J.&rft.date=2010-01-01&rft.volume=47&rft.issue=1&rft.spage=30&rft.epage=46&rft.pages=30-46&rft.issn=0868-8257&rft.eissn=2199-6156&rft_id=info:doi/10.2478/v10047-010-0002-5&rft_dat=%3Cproquest_cross%3E2935630741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323372547&rft_id=info:pmid/&rfr_iscdi=true