Influence of the substrate thermal expansion coefficient on the morphology and elastic stress of CoSb3 thin films

During the post‐annealing and cooling process of CoSb3 thin films deposited on thermally oxidized Si(100) substrates, cracks occur at the surface of the films, which can be caused by the difference in thermal expansion coefficient of the substrate and the film. To investigate the crack formation, 40...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2013-01, Vol.210 (1), p.140-146
Hauptverfasser: Daniel, M., Friedemann, M., Jöhrmann, N., Liebig, A., Donges, J., Hietschold, M., Beddies, G., Albrecht, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 140
container_title Physica status solidi. A, Applications and materials science
container_volume 210
creator Daniel, M.
Friedemann, M.
Jöhrmann, N.
Liebig, A.
Donges, J.
Hietschold, M.
Beddies, G.
Albrecht, M.
description During the post‐annealing and cooling process of CoSb3 thin films deposited on thermally oxidized Si(100) substrates, cracks occur at the surface of the films, which can be caused by the difference in thermal expansion coefficient of the substrate and the film. To investigate the crack formation, 40‐nm‐thick CoSb3 films were deposited at room temperature under ultra‐high vacuum (UHV) conditions onto various substrates, exhibiting different thermal expansion coefficients (2 × 10−6 to 12 × 10−6 K−1). All samples were post‐annealed in UHV at 500 °C for 1 h. The composition of the films was verified by Rutherford backscattering spectrometry. The phase formation and elastic stress of the films were analyzed by X‐ray diffraction, confirming the formation of the desired skutterudite phase, while the individual grains were studied by electron backscatter diffraction. In addition, the surface morphology and the roughness of the films were investigated by atomic force microscopy. For substrates with a thermal expansion coefficient between 9 × 10−6 and 11 × 10−6 K−1, crack formation can be prevented and a minimum in roughness was found, resulting also in a minimal value of the electrical resistivity.
doi_str_mv 10.1002/pssa.201228388
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1322171014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932835781</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2718-7f34945d748baa3240055eba775aac51c7d2638c1134b8dec5d243e82049883f3</originalsourceid><addsrcrecordid>eNo9kM9LwzAcxYsoOKdXzwHP1fxs0uMYOgdjKtXtGNI2dZlt0jUtbv-9LZOevu_B570vvCC4R_ARQYifau_VI4YIY0GEuAgmSEQ4jAiKL0cN4XVw4_0eQsooR5PgsLRF2WmbaeAK0O408F3q20a1enBNpUqgj7Wy3jgLMqeLwmRG2xb0dsAr19Q7V7rvE1A2B7pUvjUZ6Cu090Pn3CUp6VFjQWHKyt8GV4Uqvb77v9Pg6-X5c_4art4Wy_lsFRrMkQh5QWhMWc6pSJUimELImE4V50ypjKGM5zgiIkOI0FTkOmM5pkQLDGksBCnINHg499aNO3Tat3Lvusb2LyUiGCOOIKI9FZ-pX1Pqk6wbU6nmJBGUw6Zy2FSOm8r3JJmNrs-G56zxrT6OWdX8yIgTzuR2vZDr7cdCsGQjN-QPGnV9cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322171014</pqid></control><display><type>article</type><title>Influence of the substrate thermal expansion coefficient on the morphology and elastic stress of CoSb3 thin films</title><source>Access via Wiley Online Library</source><creator>Daniel, M. ; Friedemann, M. ; Jöhrmann, N. ; Liebig, A. ; Donges, J. ; Hietschold, M. ; Beddies, G. ; Albrecht, M.</creator><creatorcontrib>Daniel, M. ; Friedemann, M. ; Jöhrmann, N. ; Liebig, A. ; Donges, J. ; Hietschold, M. ; Beddies, G. ; Albrecht, M.</creatorcontrib><description>During the post‐annealing and cooling process of CoSb3 thin films deposited on thermally oxidized Si(100) substrates, cracks occur at the surface of the films, which can be caused by the difference in thermal expansion coefficient of the substrate and the film. To investigate the crack formation, 40‐nm‐thick CoSb3 films were deposited at room temperature under ultra‐high vacuum (UHV) conditions onto various substrates, exhibiting different thermal expansion coefficients (2 × 10−6 to 12 × 10−6 K−1). All samples were post‐annealed in UHV at 500 °C for 1 h. The composition of the films was verified by Rutherford backscattering spectrometry. The phase formation and elastic stress of the films were analyzed by X‐ray diffraction, confirming the formation of the desired skutterudite phase, while the individual grains were studied by electron backscatter diffraction. In addition, the surface morphology and the roughness of the films were investigated by atomic force microscopy. For substrates with a thermal expansion coefficient between 9 × 10−6 and 11 × 10−6 K−1, crack formation can be prevented and a minimum in roughness was found, resulting also in a minimal value of the electrical resistivity.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201228388</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>CoSb3 ; crack formation ; skutterudites ; thermal expansion coefficients ; thermal stability ; thermoelectricity</subject><ispartof>Physica status solidi. A, Applications and materials science, 2013-01, Vol.210 (1), p.140-146</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201228388$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201228388$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Daniel, M.</creatorcontrib><creatorcontrib>Friedemann, M.</creatorcontrib><creatorcontrib>Jöhrmann, N.</creatorcontrib><creatorcontrib>Liebig, A.</creatorcontrib><creatorcontrib>Donges, J.</creatorcontrib><creatorcontrib>Hietschold, M.</creatorcontrib><creatorcontrib>Beddies, G.</creatorcontrib><creatorcontrib>Albrecht, M.</creatorcontrib><title>Influence of the substrate thermal expansion coefficient on the morphology and elastic stress of CoSb3 thin films</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>Phys. Status Solidi A</addtitle><description>During the post‐annealing and cooling process of CoSb3 thin films deposited on thermally oxidized Si(100) substrates, cracks occur at the surface of the films, which can be caused by the difference in thermal expansion coefficient of the substrate and the film. To investigate the crack formation, 40‐nm‐thick CoSb3 films were deposited at room temperature under ultra‐high vacuum (UHV) conditions onto various substrates, exhibiting different thermal expansion coefficients (2 × 10−6 to 12 × 10−6 K−1). All samples were post‐annealed in UHV at 500 °C for 1 h. The composition of the films was verified by Rutherford backscattering spectrometry. The phase formation and elastic stress of the films were analyzed by X‐ray diffraction, confirming the formation of the desired skutterudite phase, while the individual grains were studied by electron backscatter diffraction. In addition, the surface morphology and the roughness of the films were investigated by atomic force microscopy. For substrates with a thermal expansion coefficient between 9 × 10−6 and 11 × 10−6 K−1, crack formation can be prevented and a minimum in roughness was found, resulting also in a minimal value of the electrical resistivity.</description><subject>CoSb3</subject><subject>crack formation</subject><subject>skutterudites</subject><subject>thermal expansion coefficients</subject><subject>thermal stability</subject><subject>thermoelectricity</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAcxYsoOKdXzwHP1fxs0uMYOgdjKtXtGNI2dZlt0jUtbv-9LZOevu_B570vvCC4R_ARQYifau_VI4YIY0GEuAgmSEQ4jAiKL0cN4XVw4_0eQsooR5PgsLRF2WmbaeAK0O408F3q20a1enBNpUqgj7Wy3jgLMqeLwmRG2xb0dsAr19Q7V7rvE1A2B7pUvjUZ6Cu090Pn3CUp6VFjQWHKyt8GV4Uqvb77v9Pg6-X5c_4art4Wy_lsFRrMkQh5QWhMWc6pSJUimELImE4V50ypjKGM5zgiIkOI0FTkOmM5pkQLDGksBCnINHg499aNO3Tat3Lvusb2LyUiGCOOIKI9FZ-pX1Pqk6wbU6nmJBGUw6Zy2FSOm8r3JJmNrs-G56zxrT6OWdX8yIgTzuR2vZDr7cdCsGQjN-QPGnV9cA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Daniel, M.</creator><creator>Friedemann, M.</creator><creator>Jöhrmann, N.</creator><creator>Liebig, A.</creator><creator>Donges, J.</creator><creator>Hietschold, M.</creator><creator>Beddies, G.</creator><creator>Albrecht, M.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Influence of the substrate thermal expansion coefficient on the morphology and elastic stress of CoSb3 thin films</title><author>Daniel, M. ; Friedemann, M. ; Jöhrmann, N. ; Liebig, A. ; Donges, J. ; Hietschold, M. ; Beddies, G. ; Albrecht, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2718-7f34945d748baa3240055eba775aac51c7d2638c1134b8dec5d243e82049883f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CoSb3</topic><topic>crack formation</topic><topic>skutterudites</topic><topic>thermal expansion coefficients</topic><topic>thermal stability</topic><topic>thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daniel, M.</creatorcontrib><creatorcontrib>Friedemann, M.</creatorcontrib><creatorcontrib>Jöhrmann, N.</creatorcontrib><creatorcontrib>Liebig, A.</creatorcontrib><creatorcontrib>Donges, J.</creatorcontrib><creatorcontrib>Hietschold, M.</creatorcontrib><creatorcontrib>Beddies, G.</creatorcontrib><creatorcontrib>Albrecht, M.</creatorcontrib><collection>Istex</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daniel, M.</au><au>Friedemann, M.</au><au>Jöhrmann, N.</au><au>Liebig, A.</au><au>Donges, J.</au><au>Hietschold, M.</au><au>Beddies, G.</au><au>Albrecht, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the substrate thermal expansion coefficient on the morphology and elastic stress of CoSb3 thin films</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>Phys. Status Solidi A</addtitle><date>2013-01</date><risdate>2013</risdate><volume>210</volume><issue>1</issue><spage>140</spage><epage>146</epage><pages>140-146</pages><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>During the post‐annealing and cooling process of CoSb3 thin films deposited on thermally oxidized Si(100) substrates, cracks occur at the surface of the films, which can be caused by the difference in thermal expansion coefficient of the substrate and the film. To investigate the crack formation, 40‐nm‐thick CoSb3 films were deposited at room temperature under ultra‐high vacuum (UHV) conditions onto various substrates, exhibiting different thermal expansion coefficients (2 × 10−6 to 12 × 10−6 K−1). All samples were post‐annealed in UHV at 500 °C for 1 h. The composition of the films was verified by Rutherford backscattering spectrometry. The phase formation and elastic stress of the films were analyzed by X‐ray diffraction, confirming the formation of the desired skutterudite phase, while the individual grains were studied by electron backscatter diffraction. In addition, the surface morphology and the roughness of the films were investigated by atomic force microscopy. For substrates with a thermal expansion coefficient between 9 × 10−6 and 11 × 10−6 K−1, crack formation can be prevented and a minimum in roughness was found, resulting also in a minimal value of the electrical resistivity.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssa.201228388</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2013-01, Vol.210 (1), p.140-146
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_1322171014
source Access via Wiley Online Library
subjects CoSb3
crack formation
skutterudites
thermal expansion coefficients
thermal stability
thermoelectricity
title Influence of the substrate thermal expansion coefficient on the morphology and elastic stress of CoSb3 thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20substrate%20thermal%20expansion%20coefficient%20on%20the%20morphology%20and%20elastic%20stress%20of%20CoSb3%20thin%20films&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Daniel,%20M.&rft.date=2013-01&rft.volume=210&rft.issue=1&rft.spage=140&rft.epage=146&rft.pages=140-146&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201228388&rft_dat=%3Cproquest_wiley%3E2932835781%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322171014&rft_id=info:pmid/&rfr_iscdi=true