Diffractive gratings for crystalline silicon solar cells-optimum parameters and loss mechanisms
ABSTRACT In this paper, we present guidelines for the design of backside gratings for crystalline silicon solar cells. We use a specially developed method based on a combination of rigorous 3D wave optical simulations and detailed semiconductor device modeling. We also present experimental results o...
Gespeichert in:
Veröffentlicht in: | Progress in photovoltaics 2012-11, Vol.20 (7), p.862-873 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 873 |
---|---|
container_issue | 7 |
container_start_page | 862 |
container_title | Progress in photovoltaics |
container_volume | 20 |
creator | Peters, Marius Rüdiger, Marc Hauser, Hubert Hermle, Martin Bläsi, Benedikt |
description | ABSTRACT
In this paper, we present guidelines for the design of backside gratings for crystalline silicon solar cells. We use a specially developed method based on a combination of rigorous 3D wave optical simulations and detailed semiconductor device modeling. We also present experimental results of fabricated structures. Simulation‐based optimizations of grating period Λ and depth d of a binary grating and calculations of the optical and electrical characteristics of solar cells with optimized gratings are shown. The investigated solar cell setup features a thickness of dbulk = 40 µm and a flat front surface. For this setup, we show a maximum increase in short‐circuit current density of ΔjSC = 1.8 mA/cm² corresponding to an efficiency enhancement of 1% absolute. Furthermore, we investigate different loss mechanisms: (i) an increased rear surface recombination velocity S0,b because of an altered surface caused by the introduction of the grating and (ii) absorption in the aluminum backside reflector. We analyze the trade‐off point between gain due to improved optical properties and loss due to corrupted electrical properties. We find that, increasing the efficiency by 1% absolute due to improved light trapping, the maximum tolerable recombination velocity is S0,b(max) = 5.2 × 103 cm/s. From simulations and measurements, we conclude that structuring of the aluminum backside reflector should be avoided because of parasitic absorption. Adding a dielectric buffer layer between silicon and the structured aluminum, absorption losses can be tuned. We find that for a planar reflector, the thickness of a SiO2 buffer layer should exceed dSiO2 = 120 nm. Copyright © 2011 John Wiley & Sons, Ltd.
We present a detailed theoretical optimization and investigation of loss mechanisms for diffractive gratings for crystalline silicon solar cells. We show that gratings have a considerable potential to increase the absorption in the solar cell. For an exemplary system an increase in short circuit current density of 1.8mA/cm2 corresponding to an increase in efficiency of 1% absolute is obtained. |
doi_str_mv | 10.1002/pip.1151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1322036302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932563261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4681-d3adbc0a30e8849cac7c10967f98b5367a4e723c6b16b871f48300654eafbf063</originalsourceid><addsrcrecordid>eNp1kF1LHDEUhgepoFXBnxAohd6MJpOZfFwW2-qWRVdQ9C6cySYam_kwZ7Z1_32z7OKdV-fAeXjPy1MUp4yeMUqr8zGMZ4w1bK84ZFTrkjX68dNmF1UptW4Ois-IL5QyqbQ4LMyP4H0CO4W_jjwlmEL_hMQPidi0xgliDL0jGGKwQ09wiJAvLkYsh3EK3aojIyTo3OQSEuiXJA6IpHP2GfqAHR4X-x4iupPdPCruf_28u7gq5zeXs4vv89LWQrFyyWHZWgqcOqVqbcFKm-sL6bVqGy4k1E5W3IqWiVZJ5mvFKRVN7cC3ngp-VHzZ5o5peF05nMzLsEp9fmkYryrKBadVpr5tKZtyzeS8GVPoIK0No2ajz2R9ZqMvo193gYAWYnbU24DvfCUapaXmmSu33L8Q3frDPLOYLXa5Oz7g5N7eeUh_jJBcNubh-tIwNZ_f_n6ozSP_D0-YjlI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322036302</pqid></control><display><type>article</type><title>Diffractive gratings for crystalline silicon solar cells-optimum parameters and loss mechanisms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Peters, Marius ; Rüdiger, Marc ; Hauser, Hubert ; Hermle, Martin ; Bläsi, Benedikt</creator><creatorcontrib>Peters, Marius ; Rüdiger, Marc ; Hauser, Hubert ; Hermle, Martin ; Bläsi, Benedikt</creatorcontrib><description>ABSTRACT
In this paper, we present guidelines for the design of backside gratings for crystalline silicon solar cells. We use a specially developed method based on a combination of rigorous 3D wave optical simulations and detailed semiconductor device modeling. We also present experimental results of fabricated structures. Simulation‐based optimizations of grating period Λ and depth d of a binary grating and calculations of the optical and electrical characteristics of solar cells with optimized gratings are shown. The investigated solar cell setup features a thickness of dbulk = 40 µm and a flat front surface. For this setup, we show a maximum increase in short‐circuit current density of ΔjSC = 1.8 mA/cm² corresponding to an efficiency enhancement of 1% absolute. Furthermore, we investigate different loss mechanisms: (i) an increased rear surface recombination velocity S0,b because of an altered surface caused by the introduction of the grating and (ii) absorption in the aluminum backside reflector. We analyze the trade‐off point between gain due to improved optical properties and loss due to corrupted electrical properties. We find that, increasing the efficiency by 1% absolute due to improved light trapping, the maximum tolerable recombination velocity is S0,b(max) = 5.2 × 103 cm/s. From simulations and measurements, we conclude that structuring of the aluminum backside reflector should be avoided because of parasitic absorption. Adding a dielectric buffer layer between silicon and the structured aluminum, absorption losses can be tuned. We find that for a planar reflector, the thickness of a SiO2 buffer layer should exceed dSiO2 = 120 nm. Copyright © 2011 John Wiley & Sons, Ltd.
We present a detailed theoretical optimization and investigation of loss mechanisms for diffractive gratings for crystalline silicon solar cells. We show that gratings have a considerable potential to increase the absorption in the solar cell. For an exemplary system an increase in short circuit current density of 1.8mA/cm2 corresponding to an increase in efficiency of 1% absolute is obtained.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.1151</identifier><identifier>CODEN: PPHOED</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Applied sciences ; crystalline silicon solar cells ; diffraction ; Energy ; Exact sciences and technology ; gratings ; light trapping ; Natural energy ; Photovoltaic conversion ; simulation ; Solar cells. Photoelectrochemical cells ; Solar energy</subject><ispartof>Progress in photovoltaics, 2012-11, Vol.20 (7), p.862-873</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4681-d3adbc0a30e8849cac7c10967f98b5367a4e723c6b16b871f48300654eafbf063</citedby><cites>FETCH-LOGICAL-c4681-d3adbc0a30e8849cac7c10967f98b5367a4e723c6b16b871f48300654eafbf063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.1151$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.1151$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26589793$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peters, Marius</creatorcontrib><creatorcontrib>Rüdiger, Marc</creatorcontrib><creatorcontrib>Hauser, Hubert</creatorcontrib><creatorcontrib>Hermle, Martin</creatorcontrib><creatorcontrib>Bläsi, Benedikt</creatorcontrib><title>Diffractive gratings for crystalline silicon solar cells-optimum parameters and loss mechanisms</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>ABSTRACT
In this paper, we present guidelines for the design of backside gratings for crystalline silicon solar cells. We use a specially developed method based on a combination of rigorous 3D wave optical simulations and detailed semiconductor device modeling. We also present experimental results of fabricated structures. Simulation‐based optimizations of grating period Λ and depth d of a binary grating and calculations of the optical and electrical characteristics of solar cells with optimized gratings are shown. The investigated solar cell setup features a thickness of dbulk = 40 µm and a flat front surface. For this setup, we show a maximum increase in short‐circuit current density of ΔjSC = 1.8 mA/cm² corresponding to an efficiency enhancement of 1% absolute. Furthermore, we investigate different loss mechanisms: (i) an increased rear surface recombination velocity S0,b because of an altered surface caused by the introduction of the grating and (ii) absorption in the aluminum backside reflector. We analyze the trade‐off point between gain due to improved optical properties and loss due to corrupted electrical properties. We find that, increasing the efficiency by 1% absolute due to improved light trapping, the maximum tolerable recombination velocity is S0,b(max) = 5.2 × 103 cm/s. From simulations and measurements, we conclude that structuring of the aluminum backside reflector should be avoided because of parasitic absorption. Adding a dielectric buffer layer between silicon and the structured aluminum, absorption losses can be tuned. We find that for a planar reflector, the thickness of a SiO2 buffer layer should exceed dSiO2 = 120 nm. Copyright © 2011 John Wiley & Sons, Ltd.
We present a detailed theoretical optimization and investigation of loss mechanisms for diffractive gratings for crystalline silicon solar cells. We show that gratings have a considerable potential to increase the absorption in the solar cell. For an exemplary system an increase in short circuit current density of 1.8mA/cm2 corresponding to an increase in efficiency of 1% absolute is obtained.</description><subject>Applied sciences</subject><subject>crystalline silicon solar cells</subject><subject>diffraction</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>gratings</subject><subject>light trapping</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>simulation</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LHDEUhgepoFXBnxAohd6MJpOZfFwW2-qWRVdQ9C6cySYam_kwZ7Z1_32z7OKdV-fAeXjPy1MUp4yeMUqr8zGMZ4w1bK84ZFTrkjX68dNmF1UptW4Ois-IL5QyqbQ4LMyP4H0CO4W_jjwlmEL_hMQPidi0xgliDL0jGGKwQ09wiJAvLkYsh3EK3aojIyTo3OQSEuiXJA6IpHP2GfqAHR4X-x4iupPdPCruf_28u7gq5zeXs4vv89LWQrFyyWHZWgqcOqVqbcFKm-sL6bVqGy4k1E5W3IqWiVZJ5mvFKRVN7cC3ngp-VHzZ5o5peF05nMzLsEp9fmkYryrKBadVpr5tKZtyzeS8GVPoIK0No2ajz2R9ZqMvo193gYAWYnbU24DvfCUapaXmmSu33L8Q3frDPLOYLXa5Oz7g5N7eeUh_jJBcNubh-tIwNZ_f_n6ozSP_D0-YjlI</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Peters, Marius</creator><creator>Rüdiger, Marc</creator><creator>Hauser, Hubert</creator><creator>Hermle, Martin</creator><creator>Bläsi, Benedikt</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201211</creationdate><title>Diffractive gratings for crystalline silicon solar cells-optimum parameters and loss mechanisms</title><author>Peters, Marius ; Rüdiger, Marc ; Hauser, Hubert ; Hermle, Martin ; Bläsi, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4681-d3adbc0a30e8849cac7c10967f98b5367a4e723c6b16b871f48300654eafbf063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>crystalline silicon solar cells</topic><topic>diffraction</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>gratings</topic><topic>light trapping</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>simulation</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Marius</creatorcontrib><creatorcontrib>Rüdiger, Marc</creatorcontrib><creatorcontrib>Hauser, Hubert</creatorcontrib><creatorcontrib>Hermle, Martin</creatorcontrib><creatorcontrib>Bläsi, Benedikt</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Marius</au><au>Rüdiger, Marc</au><au>Hauser, Hubert</au><au>Hermle, Martin</au><au>Bläsi, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffractive gratings for crystalline silicon solar cells-optimum parameters and loss mechanisms</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2012-11</date><risdate>2012</risdate><volume>20</volume><issue>7</issue><spage>862</spage><epage>873</epage><pages>862-873</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><coden>PPHOED</coden><abstract>ABSTRACT
In this paper, we present guidelines for the design of backside gratings for crystalline silicon solar cells. We use a specially developed method based on a combination of rigorous 3D wave optical simulations and detailed semiconductor device modeling. We also present experimental results of fabricated structures. Simulation‐based optimizations of grating period Λ and depth d of a binary grating and calculations of the optical and electrical characteristics of solar cells with optimized gratings are shown. The investigated solar cell setup features a thickness of dbulk = 40 µm and a flat front surface. For this setup, we show a maximum increase in short‐circuit current density of ΔjSC = 1.8 mA/cm² corresponding to an efficiency enhancement of 1% absolute. Furthermore, we investigate different loss mechanisms: (i) an increased rear surface recombination velocity S0,b because of an altered surface caused by the introduction of the grating and (ii) absorption in the aluminum backside reflector. We analyze the trade‐off point between gain due to improved optical properties and loss due to corrupted electrical properties. We find that, increasing the efficiency by 1% absolute due to improved light trapping, the maximum tolerable recombination velocity is S0,b(max) = 5.2 × 103 cm/s. From simulations and measurements, we conclude that structuring of the aluminum backside reflector should be avoided because of parasitic absorption. Adding a dielectric buffer layer between silicon and the structured aluminum, absorption losses can be tuned. We find that for a planar reflector, the thickness of a SiO2 buffer layer should exceed dSiO2 = 120 nm. Copyright © 2011 John Wiley & Sons, Ltd.
We present a detailed theoretical optimization and investigation of loss mechanisms for diffractive gratings for crystalline silicon solar cells. We show that gratings have a considerable potential to increase the absorption in the solar cell. For an exemplary system an increase in short circuit current density of 1.8mA/cm2 corresponding to an increase in efficiency of 1% absolute is obtained.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/pip.1151</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-7995 |
ispartof | Progress in photovoltaics, 2012-11, Vol.20 (7), p.862-873 |
issn | 1062-7995 1099-159X |
language | eng |
recordid | cdi_proquest_journals_1322036302 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences crystalline silicon solar cells diffraction Energy Exact sciences and technology gratings light trapping Natural energy Photovoltaic conversion simulation Solar cells. Photoelectrochemical cells Solar energy |
title | Diffractive gratings for crystalline silicon solar cells-optimum parameters and loss mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffractive%20gratings%20for%20crystalline%20silicon%20solar%20cells-optimum%20parameters%20and%20loss%20mechanisms&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Peters,%20Marius&rft.date=2012-11&rft.volume=20&rft.issue=7&rft.spage=862&rft.epage=873&rft.pages=862-873&rft.issn=1062-7995&rft.eissn=1099-159X&rft.coden=PPHOED&rft_id=info:doi/10.1002/pip.1151&rft_dat=%3Cproquest_cross%3E2932563261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322036302&rft_id=info:pmid/&rfr_iscdi=true |