About RC-like contacts in deep level transient spectroscopy and Cu(In,Ga)Se2 solar cells

ABSTRACT The low temperature Deep‐Level Transient Spectroscopy (DLTS) signal of two Cu(In, Ga)Se2 samples on glass with different buffer layers is subjected to a thorough study. A similar signal is observed in the DLTS and admittance spectra of many solar cells and is usually labeled as N1. The stan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in photovoltaics 2012-08, Vol.20 (5), p.588-594
Hauptverfasser: Lauwaert, J., Callens, L., Khelifi, S., Decock, K., Burgelman, M., Chirila, A., Pianezzi, F., Buecheler, S., Tiwari, A. N., Vrielinck, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 594
container_issue 5
container_start_page 588
container_title Progress in photovoltaics
container_volume 20
creator Lauwaert, J.
Callens, L.
Khelifi, S.
Decock, K.
Burgelman, M.
Chirila, A.
Pianezzi, F.
Buecheler, S.
Tiwari, A. N.
Vrielinck, H.
description ABSTRACT The low temperature Deep‐Level Transient Spectroscopy (DLTS) signal of two Cu(In, Ga)Se2 samples on glass with different buffer layers is subjected to a thorough study. A similar signal is observed in the DLTS and admittance spectra of many solar cells and is usually labeled as N1. The standard DLTS theory assumes the investigated device to be a Schottky or p–n diode with an ohmic back contact, and relates the spectral components to capture or emission of free carriers by defect levels in the structure. It is well‐known, though, that Cu(In, Ga)Se2 thin film solar cells deviate from this ideal structure. However, even for a device like this, where advanced numerical modeling is necessary to describe the equilibrium charge distribution as a function of applied bias, a change in the free carrier concentration at a certain position of the device as a result of capture or emission by deep defect levels should satisfy the detailed balance equation. The DLTS experiment performed with conventional and complemental settings for the reverse and pulse bias voltages (Vr 
doi_str_mv 10.1002/pip.2166
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1322034321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932563081</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2646-392a7f27425a53779c4e8c616c89c4975d77fc1f946cdb61bb066f0324a81ebb3</originalsourceid><addsrcrecordid>eNpFkFtLwzAAhYsoOKfgTwj4omBnLm3SPI7i6mB4m-LwJaRpKt1iW5NU3b-3ZaJP5zx8nANfEJwiOEEQ4qu2aicYUboXjBDkPEQxX-0PneKQcR4fBkfOrSFELOF0FKymedN58JiGptpooJraS-UdqGpQaN0Coz-1Ad7K2lW69sC1WnnbONW0WyDrAqTd-by-zOTFUmPgGiMtUNoYdxwclNI4ffKb4-B5dv2U3oSLu2yeThfhG6YRDQnHkpWYRTiWMWGMq0gniiKqkr5yFheMlQqVPKKqyCnKc0hpCQmOZIJ0npNxcLbbbW3z0WnnxbrpbN1fCkQwhiQiGPVUuKO-KqO3orXVu7RbgaAYpIlemhikifv5_ZD_fOW8_v7jpd0IygiLxcttJrIlmb0-ZERk5AeAXW7O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322034321</pqid></control><display><type>article</type><title>About RC-like contacts in deep level transient spectroscopy and Cu(In,Ga)Se2 solar cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lauwaert, J. ; Callens, L. ; Khelifi, S. ; Decock, K. ; Burgelman, M. ; Chirila, A. ; Pianezzi, F. ; Buecheler, S. ; Tiwari, A. N. ; Vrielinck, H.</creator><creatorcontrib>Lauwaert, J. ; Callens, L. ; Khelifi, S. ; Decock, K. ; Burgelman, M. ; Chirila, A. ; Pianezzi, F. ; Buecheler, S. ; Tiwari, A. N. ; Vrielinck, H.</creatorcontrib><description>ABSTRACT The low temperature Deep‐Level Transient Spectroscopy (DLTS) signal of two Cu(In, Ga)Se2 samples on glass with different buffer layers is subjected to a thorough study. A similar signal is observed in the DLTS and admittance spectra of many solar cells and is usually labeled as N1. The standard DLTS theory assumes the investigated device to be a Schottky or p–n diode with an ohmic back contact, and relates the spectral components to capture or emission of free carriers by defect levels in the structure. It is well‐known, though, that Cu(In, Ga)Se2 thin film solar cells deviate from this ideal structure. However, even for a device like this, where advanced numerical modeling is necessary to describe the equilibrium charge distribution as a function of applied bias, a change in the free carrier concentration at a certain position of the device as a result of capture or emission by deep defect levels should satisfy the detailed balance equation. The DLTS experiment performed with conventional and complemental settings for the reverse and pulse bias voltages (Vr &lt; Vp &lt; 0 and Vp &lt; Vr &lt; 0, respectively) exhibit characteristics that cannot be explained using free carrier transfer between deep levels—in the bulk or at an interface—and the conduction (electrons) or valence (holes) band of a semiconductor as a model. On the other hand, we show that for the solar cells studied here, the N1 signals follow the behavior predicted for a non‐ohmic RC‐like contact, as established in our recent paper (J. Lauwaert et al. Journal of Applied Physics 2011) closely. Copyright © 2012 John Wiley &amp; Sons, Ltd. In this study, the properties of the N1‐signal in Deep Level Transient Spectroscopy are compared with those expected for an RC‐like contact. It is concluded that for the samples studied, the N1‐signal follows the typical properties derived for an RC‐like contact closely, and that such an identification is thus very probable.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.2166</identifier><identifier>CODEN: PPHOED</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>CIGS ; DLTS</subject><ispartof>Progress in photovoltaics, 2012-08, Vol.20 (5), p.588-594</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.2166$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.2166$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lauwaert, J.</creatorcontrib><creatorcontrib>Callens, L.</creatorcontrib><creatorcontrib>Khelifi, S.</creatorcontrib><creatorcontrib>Decock, K.</creatorcontrib><creatorcontrib>Burgelman, M.</creatorcontrib><creatorcontrib>Chirila, A.</creatorcontrib><creatorcontrib>Pianezzi, F.</creatorcontrib><creatorcontrib>Buecheler, S.</creatorcontrib><creatorcontrib>Tiwari, A. N.</creatorcontrib><creatorcontrib>Vrielinck, H.</creatorcontrib><title>About RC-like contacts in deep level transient spectroscopy and Cu(In,Ga)Se2 solar cells</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>ABSTRACT The low temperature Deep‐Level Transient Spectroscopy (DLTS) signal of two Cu(In, Ga)Se2 samples on glass with different buffer layers is subjected to a thorough study. A similar signal is observed in the DLTS and admittance spectra of many solar cells and is usually labeled as N1. The standard DLTS theory assumes the investigated device to be a Schottky or p–n diode with an ohmic back contact, and relates the spectral components to capture or emission of free carriers by defect levels in the structure. It is well‐known, though, that Cu(In, Ga)Se2 thin film solar cells deviate from this ideal structure. However, even for a device like this, where advanced numerical modeling is necessary to describe the equilibrium charge distribution as a function of applied bias, a change in the free carrier concentration at a certain position of the device as a result of capture or emission by deep defect levels should satisfy the detailed balance equation. The DLTS experiment performed with conventional and complemental settings for the reverse and pulse bias voltages (Vr &lt; Vp &lt; 0 and Vp &lt; Vr &lt; 0, respectively) exhibit characteristics that cannot be explained using free carrier transfer between deep levels—in the bulk or at an interface—and the conduction (electrons) or valence (holes) band of a semiconductor as a model. On the other hand, we show that for the solar cells studied here, the N1 signals follow the behavior predicted for a non‐ohmic RC‐like contact, as established in our recent paper (J. Lauwaert et al. Journal of Applied Physics 2011) closely. Copyright © 2012 John Wiley &amp; Sons, Ltd. In this study, the properties of the N1‐signal in Deep Level Transient Spectroscopy are compared with those expected for an RC‐like contact. It is concluded that for the samples studied, the N1‐signal follows the typical properties derived for an RC‐like contact closely, and that such an identification is thus very probable.</description><subject>CIGS</subject><subject>DLTS</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLwzAAhYsoOKfgTwj4omBnLm3SPI7i6mB4m-LwJaRpKt1iW5NU3b-3ZaJP5zx8nANfEJwiOEEQ4qu2aicYUboXjBDkPEQxX-0PneKQcR4fBkfOrSFELOF0FKymedN58JiGptpooJraS-UdqGpQaN0Coz-1Ad7K2lW69sC1WnnbONW0WyDrAqTd-by-zOTFUmPgGiMtUNoYdxwclNI4ffKb4-B5dv2U3oSLu2yeThfhG6YRDQnHkpWYRTiWMWGMq0gniiKqkr5yFheMlQqVPKKqyCnKc0hpCQmOZIJ0npNxcLbbbW3z0WnnxbrpbN1fCkQwhiQiGPVUuKO-KqO3orXVu7RbgaAYpIlemhikifv5_ZD_fOW8_v7jpd0IygiLxcttJrIlmb0-ZERk5AeAXW7O</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Lauwaert, J.</creator><creator>Callens, L.</creator><creator>Khelifi, S.</creator><creator>Decock, K.</creator><creator>Burgelman, M.</creator><creator>Chirila, A.</creator><creator>Pianezzi, F.</creator><creator>Buecheler, S.</creator><creator>Tiwari, A. N.</creator><creator>Vrielinck, H.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201208</creationdate><title>About RC-like contacts in deep level transient spectroscopy and Cu(In,Ga)Se2 solar cells</title><author>Lauwaert, J. ; Callens, L. ; Khelifi, S. ; Decock, K. ; Burgelman, M. ; Chirila, A. ; Pianezzi, F. ; Buecheler, S. ; Tiwari, A. N. ; Vrielinck, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2646-392a7f27425a53779c4e8c616c89c4975d77fc1f946cdb61bb066f0324a81ebb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CIGS</topic><topic>DLTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauwaert, J.</creatorcontrib><creatorcontrib>Callens, L.</creatorcontrib><creatorcontrib>Khelifi, S.</creatorcontrib><creatorcontrib>Decock, K.</creatorcontrib><creatorcontrib>Burgelman, M.</creatorcontrib><creatorcontrib>Chirila, A.</creatorcontrib><creatorcontrib>Pianezzi, F.</creatorcontrib><creatorcontrib>Buecheler, S.</creatorcontrib><creatorcontrib>Tiwari, A. N.</creatorcontrib><creatorcontrib>Vrielinck, H.</creatorcontrib><collection>Istex</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauwaert, J.</au><au>Callens, L.</au><au>Khelifi, S.</au><au>Decock, K.</au><au>Burgelman, M.</au><au>Chirila, A.</au><au>Pianezzi, F.</au><au>Buecheler, S.</au><au>Tiwari, A. N.</au><au>Vrielinck, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About RC-like contacts in deep level transient spectroscopy and Cu(In,Ga)Se2 solar cells</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2012-08</date><risdate>2012</risdate><volume>20</volume><issue>5</issue><spage>588</spage><epage>594</epage><pages>588-594</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><coden>PPHOED</coden><abstract>ABSTRACT The low temperature Deep‐Level Transient Spectroscopy (DLTS) signal of two Cu(In, Ga)Se2 samples on glass with different buffer layers is subjected to a thorough study. A similar signal is observed in the DLTS and admittance spectra of many solar cells and is usually labeled as N1. The standard DLTS theory assumes the investigated device to be a Schottky or p–n diode with an ohmic back contact, and relates the spectral components to capture or emission of free carriers by defect levels in the structure. It is well‐known, though, that Cu(In, Ga)Se2 thin film solar cells deviate from this ideal structure. However, even for a device like this, where advanced numerical modeling is necessary to describe the equilibrium charge distribution as a function of applied bias, a change in the free carrier concentration at a certain position of the device as a result of capture or emission by deep defect levels should satisfy the detailed balance equation. The DLTS experiment performed with conventional and complemental settings for the reverse and pulse bias voltages (Vr &lt; Vp &lt; 0 and Vp &lt; Vr &lt; 0, respectively) exhibit characteristics that cannot be explained using free carrier transfer between deep levels—in the bulk or at an interface—and the conduction (electrons) or valence (holes) band of a semiconductor as a model. On the other hand, we show that for the solar cells studied here, the N1 signals follow the behavior predicted for a non‐ohmic RC‐like contact, as established in our recent paper (J. Lauwaert et al. Journal of Applied Physics 2011) closely. Copyright © 2012 John Wiley &amp; Sons, Ltd. In this study, the properties of the N1‐signal in Deep Level Transient Spectroscopy are compared with those expected for an RC‐like contact. It is concluded that for the samples studied, the N1‐signal follows the typical properties derived for an RC‐like contact closely, and that such an identification is thus very probable.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pip.2166</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1062-7995
ispartof Progress in photovoltaics, 2012-08, Vol.20 (5), p.588-594
issn 1062-7995
1099-159X
language eng
recordid cdi_proquest_journals_1322034321
source Wiley Online Library Journals Frontfile Complete
subjects CIGS
DLTS
title About RC-like contacts in deep level transient spectroscopy and Cu(In,Ga)Se2 solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20RC-like%20contacts%20in%20deep%20level%20transient%20spectroscopy%20and%20Cu(In,Ga)Se2%20solar%20cells&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Lauwaert,%20J.&rft.date=2012-08&rft.volume=20&rft.issue=5&rft.spage=588&rft.epage=594&rft.pages=588-594&rft.issn=1062-7995&rft.eissn=1099-159X&rft.coden=PPHOED&rft_id=info:doi/10.1002/pip.2166&rft_dat=%3Cproquest_wiley%3E2932563081%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322034321&rft_id=info:pmid/&rfr_iscdi=true