Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method
SUMMARY Smoothed Particle Hydrodynamics (SPH) is a particle‐based, fully Lagrangian method for fluid‐flow simulations. In this work, fundamental concepts of the method are first briefly recalled. Then, we present a thorough comparison of two different incompressibility treatments in SPH: the weakly...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2012-10, Vol.92 (4), p.343-369 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 4 |
container_start_page | 343 |
container_title | International journal for numerical methods in engineering |
container_volume | 92 |
creator | Szewc, K. Pozorski, J. Minier, J.-P. |
description | SUMMARY
Smoothed Particle Hydrodynamics (SPH) is a particle‐based, fully Lagrangian method for fluid‐flow simulations. In this work, fundamental concepts of the method are first briefly recalled. Then, we present a thorough comparison of two different incompressibility treatments in SPH: the weakly compressible approach, where a suitably chosen equation of state is used, and the truly incompressible method (in two basic variants), where the velocity field projection onto a divergence‐free space is performed. A noteworthy aspect of the study is that in each incompressibility treatment, the same boundary conditions are used (and further developed) that allows a direct comparison to be made. Two‐dimensional and three‐dimensional validation cases are studied. Problems associated with the numerical setup are discussed, and an optimal choice of the computational parameters is proposed and verified. The efficiency issues of the incompressibility treatments are considered, and the speed‐up features are highlighted. The results show that the present state‐of‐the‐art truly incompressible methods (based on a velocity correction) suffer from density accumulation errors. To address this issue, an algorithm, based on a correction for both particle velocities and positions, is presented. The usefulness of this density correction is examined and demonstrated. Copyright © 2012 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.4339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1321987847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932490071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4619-1111b9d5586e536352ee52ecf38d2eafa22f68db52a8ca9205b38861180f9da3</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4P8CcURPCmMx9LmlzK0CnqRBwI3oQsTVlm28ycDu2_N3PDOwOHc3EeXsiL0BnBQ4IxvWobNxwxpvbQgGBV5JjiYh8N0knlXElyiI4AlhgTwjEboPfr1tQ9eMhClXULl_nWhmYVHYCf-9p3fWZDC100vu3S8ddAE0LaZbYysfO2dtmiL2Mo-9Y03kLWuG4RyhN0UJka3OluH6PZ7c1sfJc_Pk_ux9ePuR0JonKS3lyVnEvhOBOMU-fS2IrJkjpTGUorIcs5p0ZaoyjmcyalIETiSpWGHaPzbewqhs-1g04vwzqmX4EmjBIlCzkqkrrcKhsDQHSVXkXfmNhrgvWmOJ2K05viEr3YBRqwpq6iaa2HP08FKwSRo-Tyrfvytev_zdPTp5td7s576Nz3nzfxQ4uCFVy_TSd68iBmL69irAX7AQ_Pi-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321987847</pqid></control><display><type>article</type><title>Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method</title><source>Wiley Online Library All Journals</source><creator>Szewc, K. ; Pozorski, J. ; Minier, J.-P.</creator><creatorcontrib>Szewc, K. ; Pozorski, J. ; Minier, J.-P.</creatorcontrib><description>SUMMARY
Smoothed Particle Hydrodynamics (SPH) is a particle‐based, fully Lagrangian method for fluid‐flow simulations. In this work, fundamental concepts of the method are first briefly recalled. Then, we present a thorough comparison of two different incompressibility treatments in SPH: the weakly compressible approach, where a suitably chosen equation of state is used, and the truly incompressible method (in two basic variants), where the velocity field projection onto a divergence‐free space is performed. A noteworthy aspect of the study is that in each incompressibility treatment, the same boundary conditions are used (and further developed) that allows a direct comparison to be made. Two‐dimensional and three‐dimensional validation cases are studied. Problems associated with the numerical setup are discussed, and an optimal choice of the computational parameters is proposed and verified. The efficiency issues of the incompressibility treatments are considered, and the speed‐up features are highlighted. The results show that the present state‐of‐the‐art truly incompressible methods (based on a velocity correction) suffer from density accumulation errors. To address this issue, an algorithm, based on a correction for both particle velocities and positions, is presented. The usefulness of this density correction is examined and demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4339</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Computational methods in fluid dynamics ; density correction ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; incompressible flows ; particle methods ; Physics ; SPH</subject><ispartof>International journal for numerical methods in engineering, 2012-10, Vol.92 (4), p.343-369</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4619-1111b9d5586e536352ee52ecf38d2eafa22f68db52a8ca9205b38861180f9da3</citedby><cites>FETCH-LOGICAL-c4619-1111b9d5586e536352ee52ecf38d2eafa22f68db52a8ca9205b38861180f9da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4339$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4339$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26376184$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Szewc, K.</creatorcontrib><creatorcontrib>Pozorski, J.</creatorcontrib><creatorcontrib>Minier, J.-P.</creatorcontrib><title>Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARY
Smoothed Particle Hydrodynamics (SPH) is a particle‐based, fully Lagrangian method for fluid‐flow simulations. In this work, fundamental concepts of the method are first briefly recalled. Then, we present a thorough comparison of two different incompressibility treatments in SPH: the weakly compressible approach, where a suitably chosen equation of state is used, and the truly incompressible method (in two basic variants), where the velocity field projection onto a divergence‐free space is performed. A noteworthy aspect of the study is that in each incompressibility treatment, the same boundary conditions are used (and further developed) that allows a direct comparison to be made. Two‐dimensional and three‐dimensional validation cases are studied. Problems associated with the numerical setup are discussed, and an optimal choice of the computational parameters is proposed and verified. The efficiency issues of the incompressibility treatments are considered, and the speed‐up features are highlighted. The results show that the present state‐of‐the‐art truly incompressible methods (based on a velocity correction) suffer from density accumulation errors. To address this issue, an algorithm, based on a correction for both particle velocities and positions, is presented. The usefulness of this density correction is examined and demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.</description><subject>Computational methods in fluid dynamics</subject><subject>density correction</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>incompressible flows</subject><subject>particle methods</subject><subject>Physics</subject><subject>SPH</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4P8CcURPCmMx9LmlzK0CnqRBwI3oQsTVlm28ycDu2_N3PDOwOHc3EeXsiL0BnBQ4IxvWobNxwxpvbQgGBV5JjiYh8N0knlXElyiI4AlhgTwjEboPfr1tQ9eMhClXULl_nWhmYVHYCf-9p3fWZDC100vu3S8ddAE0LaZbYysfO2dtmiL2Mo-9Y03kLWuG4RyhN0UJka3OluH6PZ7c1sfJc_Pk_ux9ePuR0JonKS3lyVnEvhOBOMU-fS2IrJkjpTGUorIcs5p0ZaoyjmcyalIETiSpWGHaPzbewqhs-1g04vwzqmX4EmjBIlCzkqkrrcKhsDQHSVXkXfmNhrgvWmOJ2K05viEr3YBRqwpq6iaa2HP08FKwSRo-Tyrfvytev_zdPTp5td7s576Nz3nzfxQ4uCFVy_TSd68iBmL69irAX7AQ_Pi-g</recordid><startdate>20121026</startdate><enddate>20121026</enddate><creator>Szewc, K.</creator><creator>Pozorski, J.</creator><creator>Minier, J.-P.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121026</creationdate><title>Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method</title><author>Szewc, K. ; Pozorski, J. ; Minier, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4619-1111b9d5586e536352ee52ecf38d2eafa22f68db52a8ca9205b38861180f9da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational methods in fluid dynamics</topic><topic>density correction</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>incompressible flows</topic><topic>particle methods</topic><topic>Physics</topic><topic>SPH</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szewc, K.</creatorcontrib><creatorcontrib>Pozorski, J.</creatorcontrib><creatorcontrib>Minier, J.-P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szewc, K.</au><au>Pozorski, J.</au><au>Minier, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2012-10-26</date><risdate>2012</risdate><volume>92</volume><issue>4</issue><spage>343</spage><epage>369</epage><pages>343-369</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARY
Smoothed Particle Hydrodynamics (SPH) is a particle‐based, fully Lagrangian method for fluid‐flow simulations. In this work, fundamental concepts of the method are first briefly recalled. Then, we present a thorough comparison of two different incompressibility treatments in SPH: the weakly compressible approach, where a suitably chosen equation of state is used, and the truly incompressible method (in two basic variants), where the velocity field projection onto a divergence‐free space is performed. A noteworthy aspect of the study is that in each incompressibility treatment, the same boundary conditions are used (and further developed) that allows a direct comparison to be made. Two‐dimensional and three‐dimensional validation cases are studied. Problems associated with the numerical setup are discussed, and an optimal choice of the computational parameters is proposed and verified. The efficiency issues of the incompressibility treatments are considered, and the speed‐up features are highlighted. The results show that the present state‐of‐the‐art truly incompressible methods (based on a velocity correction) suffer from density accumulation errors. To address this issue, an algorithm, based on a correction for both particle velocities and positions, is presented. The usefulness of this density correction is examined and demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.4339</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2012-10, Vol.92 (4), p.343-369 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_1321987847 |
source | Wiley Online Library All Journals |
subjects | Computational methods in fluid dynamics density correction Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) incompressible flows particle methods Physics SPH |
title | Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20incompressibility%20constraint%20in%20the%20smoothed%20particle%20hydrodynamics%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Szewc,%20K.&rft.date=2012-10-26&rft.volume=92&rft.issue=4&rft.spage=343&rft.epage=369&rft.pages=343-369&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4339&rft_dat=%3Cproquest_cross%3E2932490071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321987847&rft_id=info:pmid/&rfr_iscdi=true |