Strong Chromatic Index of 2-Degenerate Graphs
We prove that the strong chromatic index of a 2‐degenerate graph is linear in the maximum degree Δ. This includes the class of all chordless graphs (graphs in which every cycle is induced) which in turn includes graphs where the cycle lengths are multiples of four, and settles a problem by Faudree e...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2013-06, Vol.73 (2), p.119-126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | 2 |
container_start_page | 119 |
container_title | Journal of graph theory |
container_volume | 73 |
creator | Chang, Gerard Jennhwa Narayanan, N. |
description | We prove that the strong chromatic index of a 2‐degenerate graph is linear in the maximum degree Δ. This includes the class of all chordless graphs (graphs in which every cycle is induced) which in turn includes graphs where the cycle lengths are multiples of four, and settles a problem by Faudree et al. (Ars Combin 29(B) (1990), 205–211). © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 119–126, 2013 |
doi_str_mv | 10.1002/jgt.21646 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1321923458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932289081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3356-b29635325efdc0b0e65b0a4a6b380c870307e528997c21cdb482ffdf08b305ea3</originalsourceid><addsrcrecordid>eNp1kEFPwjAUgBujiYge_AdLPHkovLZr1x3N1IlBjIrx2HRbC0PYoB0R_r3TqTdPL3n5vveSD6FzAgMCQIeLWTOgRITiAPUIxBEGQuQh6gETIY6BhsfoxPsFtGsOsofwS-PqahYkc1evdFPmwagqzC6obUDxtZmZyjjdmCB1ej33p-jI6qU3Zz-zj15vb6bJHR4_pqPkaoxzxrjAGY0F44xyY4scMjCCZ6BDLTImIZcRMIgMpzKOo5ySvMhCSa0tLMiMATea9dFFd3ft6s3W-EYt6q2r2peKMEpiykIuW-qyo3JXe--MVWtXrrTbKwLqq4Zqa6jvGi077NiPcmn2_4PqPp3-GrgzSt-Y3Z-h3bsSEYu4epukij88TSYJe1bAPgG5Y21w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321923458</pqid></control><display><type>article</type><title>Strong Chromatic Index of 2-Degenerate Graphs</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chang, Gerard Jennhwa ; Narayanan, N.</creator><creatorcontrib>Chang, Gerard Jennhwa ; Narayanan, N.</creatorcontrib><description>We prove that the strong chromatic index of a 2‐degenerate graph is linear in the maximum degree Δ. This includes the class of all chordless graphs (graphs in which every cycle is induced) which in turn includes graphs where the cycle lengths are multiples of four, and settles a problem by Faudree et al. (Ars Combin 29(B) (1990), 205–211). © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 119–126, 2013</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.21646</identifier><identifier>CODEN: JGTHDO</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>2-degenerate graph ; block line critical graph ; chordless graph ; edge coloring ; induced matching ; strong chromatic index</subject><ispartof>Journal of graph theory, 2013-06, Vol.73 (2), p.119-126</ispartof><rights>2012 Wiley Periodicals, Inc.</rights><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3356-b29635325efdc0b0e65b0a4a6b380c870307e528997c21cdb482ffdf08b305ea3</citedby><cites>FETCH-LOGICAL-c3356-b29635325efdc0b0e65b0a4a6b380c870307e528997c21cdb482ffdf08b305ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.21646$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.21646$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chang, Gerard Jennhwa</creatorcontrib><creatorcontrib>Narayanan, N.</creatorcontrib><title>Strong Chromatic Index of 2-Degenerate Graphs</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>We prove that the strong chromatic index of a 2‐degenerate graph is linear in the maximum degree Δ. This includes the class of all chordless graphs (graphs in which every cycle is induced) which in turn includes graphs where the cycle lengths are multiples of four, and settles a problem by Faudree et al. (Ars Combin 29(B) (1990), 205–211). © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 119–126, 2013</description><subject>2-degenerate graph</subject><subject>block line critical graph</subject><subject>chordless graph</subject><subject>edge coloring</subject><subject>induced matching</subject><subject>strong chromatic index</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwjAUgBujiYge_AdLPHkovLZr1x3N1IlBjIrx2HRbC0PYoB0R_r3TqTdPL3n5vveSD6FzAgMCQIeLWTOgRITiAPUIxBEGQuQh6gETIY6BhsfoxPsFtGsOsofwS-PqahYkc1evdFPmwagqzC6obUDxtZmZyjjdmCB1ej33p-jI6qU3Zz-zj15vb6bJHR4_pqPkaoxzxrjAGY0F44xyY4scMjCCZ6BDLTImIZcRMIgMpzKOo5ySvMhCSa0tLMiMATea9dFFd3ft6s3W-EYt6q2r2peKMEpiykIuW-qyo3JXe--MVWtXrrTbKwLqq4Zqa6jvGi077NiPcmn2_4PqPp3-GrgzSt-Y3Z-h3bsSEYu4epukij88TSYJe1bAPgG5Y21w</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Chang, Gerard Jennhwa</creator><creator>Narayanan, N.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201306</creationdate><title>Strong Chromatic Index of 2-Degenerate Graphs</title><author>Chang, Gerard Jennhwa ; Narayanan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3356-b29635325efdc0b0e65b0a4a6b380c870307e528997c21cdb482ffdf08b305ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>2-degenerate graph</topic><topic>block line critical graph</topic><topic>chordless graph</topic><topic>edge coloring</topic><topic>induced matching</topic><topic>strong chromatic index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Gerard Jennhwa</creatorcontrib><creatorcontrib>Narayanan, N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Gerard Jennhwa</au><au>Narayanan, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Chromatic Index of 2-Degenerate Graphs</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2013-06</date><risdate>2013</risdate><volume>73</volume><issue>2</issue><spage>119</spage><epage>126</epage><pages>119-126</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><coden>JGTHDO</coden><abstract>We prove that the strong chromatic index of a 2‐degenerate graph is linear in the maximum degree Δ. This includes the class of all chordless graphs (graphs in which every cycle is induced) which in turn includes graphs where the cycle lengths are multiples of four, and settles a problem by Faudree et al. (Ars Combin 29(B) (1990), 205–211). © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 119–126, 2013</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgt.21646</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 2013-06, Vol.73 (2), p.119-126 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_proquest_journals_1321923458 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2-degenerate graph block line critical graph chordless graph edge coloring induced matching strong chromatic index |
title | Strong Chromatic Index of 2-Degenerate Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Chromatic%20Index%20of%202-Degenerate%20Graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Chang,%20Gerard%20Jennhwa&rft.date=2013-06&rft.volume=73&rft.issue=2&rft.spage=119&rft.epage=126&rft.pages=119-126&rft.issn=0364-9024&rft.eissn=1097-0118&rft.coden=JGTHDO&rft_id=info:doi/10.1002/jgt.21646&rft_dat=%3Cproquest_cross%3E2932289081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321923458&rft_id=info:pmid/&rfr_iscdi=true |