Modeling of Strain Hardening in the Aluminum Alloy AA6061

In this paper, the evolution of work-hardening and dynamic recovery rates vs the flow stress increase ( σ  −  σ y ) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the σ –ε curve, which i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-05, Vol.44 (5), p.2409-2417
Hauptverfasser: Bahrami, Abbas, Miroux, Alexis, Sietsma, Jilt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2417
container_issue 5
container_start_page 2409
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 44
creator Bahrami, Abbas
Miroux, Alexis
Sietsma, Jilt
description In this paper, the evolution of work-hardening and dynamic recovery rates vs the flow stress increase ( σ  −  σ y ) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the σ –ε curve, which is associated with the elastic–plastic transition. After the elastic–plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as ( σ  −  σ y ) increases. However, for overaged alloys after elastic–plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks–Mecking–Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data.
doi_str_mv 10.1007/s11661-012-1594-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1319493270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927140741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-d9eb67b6066aa1922ba6efad5392ade0e915ba05ab589d0c24bca6c951b63b4f3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIuEOBp2_Qo-RhVQpCIOwNmyE6ekSpNiJ4f-Pa5SIS6c9jUzuzuEXCPcIUB-HxGVQgrIKEotqDohM5SCU9QCTlMOOadSMX5OLmLcAABqrmZEv_aVb5tunfV19j4E23TZ0obKd4deKoYvnxXtuG26cZuStt9nRaFA4SU5q20b_dUxzsnn0-PHYklXb88vi2JFS4FsoJX2TuUuMZS1qBlzVvnaVpJrZisPXqN0FqR18kFXUDLhSqtKLdEp7kTN5-Rm0t2F_nv0cTCbfgxdWmmQp-80ZzkkFE6oMvQxBl-bXWi2NuwNgjk4ZCaHTHLIHBwyKnFuj8o2lratg-3KJv4SWZ5OzLlIODbhYhp1ax_-XPCv-A8o2XN6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1319493270</pqid></control><display><type>article</type><title>Modeling of Strain Hardening in the Aluminum Alloy AA6061</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bahrami, Abbas ; Miroux, Alexis ; Sietsma, Jilt</creator><creatorcontrib>Bahrami, Abbas ; Miroux, Alexis ; Sietsma, Jilt</creatorcontrib><description>In this paper, the evolution of work-hardening and dynamic recovery rates vs the flow stress increase ( σ  −  σ y ) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the σ –ε curve, which is associated with the elastic–plastic transition. After the elastic–plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as ( σ  −  σ y ) increases. However, for overaged alloys after elastic–plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks–Mecking–Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-012-1594-6</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminum magnesium silicon alloys ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Exact sciences and technology ; Materials Science ; Mechanical properties ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Nanotechnology ; Stress-strain curves ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-05, Vol.44 (5), p.2409-2417</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-d9eb67b6066aa1922ba6efad5392ade0e915ba05ab589d0c24bca6c951b63b4f3</citedby><cites>FETCH-LOGICAL-c412t-d9eb67b6066aa1922ba6efad5392ade0e915ba05ab589d0c24bca6c951b63b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-012-1594-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-012-1594-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27392734$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahrami, Abbas</creatorcontrib><creatorcontrib>Miroux, Alexis</creatorcontrib><creatorcontrib>Sietsma, Jilt</creatorcontrib><title>Modeling of Strain Hardening in the Aluminum Alloy AA6061</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In this paper, the evolution of work-hardening and dynamic recovery rates vs the flow stress increase ( σ  −  σ y ) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the σ –ε curve, which is associated with the elastic–plastic transition. After the elastic–plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as ( σ  −  σ y ) increases. However, for overaged alloys after elastic–plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks–Mecking–Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data.</description><subject>Aluminum magnesium silicon alloys</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Stress-strain curves</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcIuEOBp2_Qo-RhVQpCIOwNmyE6ekSpNiJ4f-Pa5SIS6c9jUzuzuEXCPcIUB-HxGVQgrIKEotqDohM5SCU9QCTlMOOadSMX5OLmLcAABqrmZEv_aVb5tunfV19j4E23TZ0obKd4deKoYvnxXtuG26cZuStt9nRaFA4SU5q20b_dUxzsnn0-PHYklXb88vi2JFS4FsoJX2TuUuMZS1qBlzVvnaVpJrZisPXqN0FqR18kFXUDLhSqtKLdEp7kTN5-Rm0t2F_nv0cTCbfgxdWmmQp-80ZzkkFE6oMvQxBl-bXWi2NuwNgjk4ZCaHTHLIHBwyKnFuj8o2lratg-3KJv4SWZ5OzLlIODbhYhp1ax_-XPCv-A8o2XN6</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Bahrami, Abbas</creator><creator>Miroux, Alexis</creator><creator>Sietsma, Jilt</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130501</creationdate><title>Modeling of Strain Hardening in the Aluminum Alloy AA6061</title><author>Bahrami, Abbas ; Miroux, Alexis ; Sietsma, Jilt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-d9eb67b6066aa1922ba6efad5392ade0e915ba05ab589d0c24bca6c951b63b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum magnesium silicon alloys</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Stress-strain curves</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahrami, Abbas</creatorcontrib><creatorcontrib>Miroux, Alexis</creatorcontrib><creatorcontrib>Sietsma, Jilt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahrami, Abbas</au><au>Miroux, Alexis</au><au>Sietsma, Jilt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Strain Hardening in the Aluminum Alloy AA6061</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>44</volume><issue>5</issue><spage>2409</spage><epage>2417</epage><pages>2409-2417</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>In this paper, the evolution of work-hardening and dynamic recovery rates vs the flow stress increase ( σ  −  σ y ) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the σ –ε curve, which is associated with the elastic–plastic transition. After the elastic–plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as ( σ  −  σ y ) increases. However, for overaged alloys after elastic–plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks–Mecking–Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-012-1594-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-05, Vol.44 (5), p.2409-2417
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_1319493270
source SpringerLink Journals - AutoHoldings
subjects Aluminum magnesium silicon alloys
Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Exact sciences and technology
Materials Science
Mechanical properties
Metallic Materials
Metallurgy
Metals. Metallurgy
Nanotechnology
Stress-strain curves
Structural Materials
Surfaces and Interfaces
Thin Films
title Modeling of Strain Hardening in the Aluminum Alloy AA6061
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Strain%20Hardening%20in%20the%20Aluminum%20Alloy%20AA6061&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Bahrami,%20Abbas&rft.date=2013-05-01&rft.volume=44&rft.issue=5&rft.spage=2409&rft.epage=2417&rft.pages=2409-2417&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-012-1594-6&rft_dat=%3Cproquest_cross%3E2927140741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1319493270&rft_id=info:pmid/&rfr_iscdi=true