Modeling of Strain Hardening in the Aluminum Alloy AA6061
In this paper, the evolution of work-hardening and dynamic recovery rates vs the flow stress increase ( σ − σ y ) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the σ –ε curve, which i...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-05, Vol.44 (5), p.2409-2417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2417 |
---|---|
container_issue | 5 |
container_start_page | 2409 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 44 |
creator | Bahrami, Abbas Miroux, Alexis Sietsma, Jilt |
description | In this paper, the evolution of work-hardening and dynamic recovery rates
vs
the flow stress increase (
σ
−
σ
y
) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the
σ
–ε curve, which is associated with the elastic–plastic transition. After the elastic–plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as (
σ
−
σ
y
) increases. However, for overaged alloys after elastic–plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks–Mecking–Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data. |
doi_str_mv | 10.1007/s11661-012-1594-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1319493270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927140741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-d9eb67b6066aa1922ba6efad5392ade0e915ba05ab589d0c24bca6c951b63b4f3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIuEOBp2_Qo-RhVQpCIOwNmyE6ekSpNiJ4f-Pa5SIS6c9jUzuzuEXCPcIUB-HxGVQgrIKEotqDohM5SCU9QCTlMOOadSMX5OLmLcAABqrmZEv_aVb5tunfV19j4E23TZ0obKd4deKoYvnxXtuG26cZuStt9nRaFA4SU5q20b_dUxzsnn0-PHYklXb88vi2JFS4FsoJX2TuUuMZS1qBlzVvnaVpJrZisPXqN0FqR18kFXUDLhSqtKLdEp7kTN5-Rm0t2F_nv0cTCbfgxdWmmQp-80ZzkkFE6oMvQxBl-bXWi2NuwNgjk4ZCaHTHLIHBwyKnFuj8o2lratg-3KJv4SWZ5OzLlIODbhYhp1ax_-XPCv-A8o2XN6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1319493270</pqid></control><display><type>article</type><title>Modeling of Strain Hardening in the Aluminum Alloy AA6061</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bahrami, Abbas ; Miroux, Alexis ; Sietsma, Jilt</creator><creatorcontrib>Bahrami, Abbas ; Miroux, Alexis ; Sietsma, Jilt</creatorcontrib><description>In this paper, the evolution of work-hardening and dynamic recovery rates
vs
the flow stress increase (
σ
−
σ
y
) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the
σ
–ε curve, which is associated with the elastic–plastic transition. After the elastic–plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as (
σ
−
σ
y
) increases. However, for overaged alloys after elastic–plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks–Mecking–Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-012-1594-6</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminum magnesium silicon alloys ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Exact sciences and technology ; Materials Science ; Mechanical properties ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Nanotechnology ; Stress-strain curves ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-05, Vol.44 (5), p.2409-2417</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-d9eb67b6066aa1922ba6efad5392ade0e915ba05ab589d0c24bca6c951b63b4f3</citedby><cites>FETCH-LOGICAL-c412t-d9eb67b6066aa1922ba6efad5392ade0e915ba05ab589d0c24bca6c951b63b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-012-1594-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-012-1594-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27392734$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahrami, Abbas</creatorcontrib><creatorcontrib>Miroux, Alexis</creatorcontrib><creatorcontrib>Sietsma, Jilt</creatorcontrib><title>Modeling of Strain Hardening in the Aluminum Alloy AA6061</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In this paper, the evolution of work-hardening and dynamic recovery rates
vs
the flow stress increase (
σ
−
σ
y
) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the
σ
–ε curve, which is associated with the elastic–plastic transition. After the elastic–plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as (
σ
−
σ
y
) increases. However, for overaged alloys after elastic–plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks–Mecking–Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data.</description><subject>Aluminum magnesium silicon alloys</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Stress-strain curves</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcIuEOBp2_Qo-RhVQpCIOwNmyE6ekSpNiJ4f-Pa5SIS6c9jUzuzuEXCPcIUB-HxGVQgrIKEotqDohM5SCU9QCTlMOOadSMX5OLmLcAABqrmZEv_aVb5tunfV19j4E23TZ0obKd4deKoYvnxXtuG26cZuStt9nRaFA4SU5q20b_dUxzsnn0-PHYklXb88vi2JFS4FsoJX2TuUuMZS1qBlzVvnaVpJrZisPXqN0FqR18kFXUDLhSqtKLdEp7kTN5-Rm0t2F_nv0cTCbfgxdWmmQp-80ZzkkFE6oMvQxBl-bXWi2NuwNgjk4ZCaHTHLIHBwyKnFuj8o2lratg-3KJv4SWZ5OzLlIODbhYhp1ax_-XPCv-A8o2XN6</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Bahrami, Abbas</creator><creator>Miroux, Alexis</creator><creator>Sietsma, Jilt</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20130501</creationdate><title>Modeling of Strain Hardening in the Aluminum Alloy AA6061</title><author>Bahrami, Abbas ; Miroux, Alexis ; Sietsma, Jilt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-d9eb67b6066aa1922ba6efad5392ade0e915ba05ab589d0c24bca6c951b63b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum magnesium silicon alloys</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Stress-strain curves</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahrami, Abbas</creatorcontrib><creatorcontrib>Miroux, Alexis</creatorcontrib><creatorcontrib>Sietsma, Jilt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahrami, Abbas</au><au>Miroux, Alexis</au><au>Sietsma, Jilt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Strain Hardening in the Aluminum Alloy AA6061</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>44</volume><issue>5</issue><spage>2409</spage><epage>2417</epage><pages>2409-2417</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>In this paper, the evolution of work-hardening and dynamic recovery rates
vs
the flow stress increase (
σ
−
σ
y
) in Al-Mg-Si alloys is presented. The experimental data have been extracted from stress–strain curves. All curves show an initial very rapid decrease in slope of the
σ
–ε curve, which is associated with the elastic–plastic transition. After the elastic–plastic transition, there are typically two distinctive behaviors. For underaged alloys, there is an approximately linear decrease of work-hardening rate as (
σ
−
σ
y
) increases. However, for overaged alloys after elastic–plastic transition, there is a plateau in the work-hardening rate followed by an almost linear decrease. The maximum work-hardening and dynamic recovery rates are found to be dependent on the aging state. In order to investigate these phenomena, a model has been employed to simulate the work-hardening behavior of Al-Mg-Si alloys. The model is based on a modified version of Kocks–Mecking–Estrin (KME) model, in which there are three main components: (1) hardening due to forest dislocations, grain boundaries, and sub-grains; (2) hardening due to the precipitates; and (3) dynamic recovery. The modeling results are discussed and compared with the experimental data.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-012-1594-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-05, Vol.44 (5), p.2409-2417 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_1319493270 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum magnesium silicon alloys Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Exact sciences and technology Materials Science Mechanical properties Metallic Materials Metallurgy Metals. Metallurgy Nanotechnology Stress-strain curves Structural Materials Surfaces and Interfaces Thin Films |
title | Modeling of Strain Hardening in the Aluminum Alloy AA6061 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Strain%20Hardening%20in%20the%20Aluminum%20Alloy%20AA6061&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Bahrami,%20Abbas&rft.date=2013-05-01&rft.volume=44&rft.issue=5&rft.spage=2409&rft.epage=2417&rft.pages=2409-2417&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-012-1594-6&rft_dat=%3Cproquest_cross%3E2927140741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1319493270&rft_id=info:pmid/&rfr_iscdi=true |