TRUSTS: Scheduling Randomized Patrols for Fare Inspection in Transit Systems Using Game Theory

In proof‐of‐payment transit systems, passengers are legally required to purchase tickets before entering but are not physically forced to do so. Instead, patrol units move about the transit system, inspecting the tickets of passengers, who face fines if caught fare evading. The deterrence of fare ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The AI magazine 2012-12, Vol.33 (4), p.59-72
Hauptverfasser: Yin, Zhengyu, Jiang, Albert Xin, Tambe, Milind, Kiekintveld, Christopher, Leyton‐Brown, Kevin, Sandholm, Tuomas, Sullivan, John P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 4
container_start_page 59
container_title The AI magazine
container_volume 33
creator Yin, Zhengyu
Jiang, Albert Xin
Tambe, Milind
Kiekintveld, Christopher
Leyton‐Brown, Kevin
Sandholm, Tuomas
Sullivan, John P.
description In proof‐of‐payment transit systems, passengers are legally required to purchase tickets before entering but are not physically forced to do so. Instead, patrol units move about the transit system, inspecting the tickets of passengers, who face fines if caught fare evading. The deterrence of fare evasion depends on the unpredictability and effectiveness of the patrols. In this article, we present TRUSTS, an application for scheduling randomized patrols for fare inspection in transit systems. TRUSTS models the problem of computing patrol strategies as a leader‐follower Stackelberg game where the objective is to deter fare evasion and hence maximize revenue. This problem differs from previously studied Stackelberg settings in that the leader strategies must satisfy massive temporal and spatial constraints; moreover, unlike in these counterterrorism‐motivated Stackelberg applications, a large fraction of the ridership might realistically consider fare evasion, and so the number of followers is potentially huge. A third key novelty in our work is deliberate simplification of leader strategies to make patrols easier to execute. We present an efficient algorithm for computing such patrol strategies and present experimental results using real‐world ridership data from the Los Angeles Metro Rail system. The Los Angeles County Sheriff's Department is currently carrying out trials of TRUSTS.
doi_str_mv 10.1609/aimag.v33i4.2432
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1318796967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A314443022</galeid><sourcerecordid>A314443022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6675-7f475321f3f0cf464bdd9d1a31b343af1b5d41998ba1a7efcb8094ccdc0c1b93</originalsourceid><addsrcrecordid>eNqV0tGL0zAcB_AiCs7Tdx8D4oNgZ9JkaePbbrg5GJ6svVdDmiZdjrbZJa3e7q83uw11MPSkkEL4fBPI7xtFrxEcIwrZB2FaUY-_Y2zIOCE4eRKNEpyimNEEPY1GMMVZTChMnkcvvL-BENIM01H0rVhf50X-EeRyo6qhMV0N1qKrbGvuVQW-it7ZxgNtHZgLp8Cy81sle2M7YDpQONF504N853vVenDt9_mFaBUoNsq63cvomRaNV6-O_4uomH8qZp_j1dViOZuuYklpOolTTdIJTpDGGkpNKCmrilVIYFRigoVG5aQiiLGsFEikSssyg4xIWUkoUcnwRfTmcOzW2dtB-Z7f2MF14UaOMMpSRhlNf6taNIqbTtveCdkaL_kUI0IIhkkSVHxG1apTTjS2U9qE7RM_PuPDV6nWyLOBdyeBYHp119di8J4v8_V_2C-Pt5eLR9tssfrbgxyttE2jasXDHGdXp_79H74cQieUD4s39ab3hytOODxw6az3Tmm-daHLbscR5Ptq84dq84dq8321Q-TtcdzCS9Ho0EJp_K9cQtM0g5gGxw7uRxjB7p_n8ul0urycQ5iFMv4EIQwFAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1318796967</pqid></control><display><type>article</type><title>TRUSTS: Scheduling Randomized Patrols for Fare Inspection in Transit Systems Using Game Theory</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yin, Zhengyu ; Jiang, Albert Xin ; Tambe, Milind ; Kiekintveld, Christopher ; Leyton‐Brown, Kevin ; Sandholm, Tuomas ; Sullivan, John P.</creator><creatorcontrib>Yin, Zhengyu ; Jiang, Albert Xin ; Tambe, Milind ; Kiekintveld, Christopher ; Leyton‐Brown, Kevin ; Sandholm, Tuomas ; Sullivan, John P.</creatorcontrib><description>In proof‐of‐payment transit systems, passengers are legally required to purchase tickets before entering but are not physically forced to do so. Instead, patrol units move about the transit system, inspecting the tickets of passengers, who face fines if caught fare evading. The deterrence of fare evasion depends on the unpredictability and effectiveness of the patrols. In this article, we present TRUSTS, an application for scheduling randomized patrols for fare inspection in transit systems. TRUSTS models the problem of computing patrol strategies as a leader‐follower Stackelberg game where the objective is to deter fare evasion and hence maximize revenue. This problem differs from previously studied Stackelberg settings in that the leader strategies must satisfy massive temporal and spatial constraints; moreover, unlike in these counterterrorism‐motivated Stackelberg applications, a large fraction of the ridership might realistically consider fare evasion, and so the number of followers is potentially huge. A third key novelty in our work is deliberate simplification of leader strategies to make patrols easier to execute. We present an efficient algorithm for computing such patrol strategies and present experimental results using real‐world ridership data from the Los Angeles Metro Rail system. The Los Angeles County Sheriff's Department is currently carrying out trials of TRUSTS.</description><identifier>ISSN: 0738-4602</identifier><identifier>EISSN: 2371-9621</identifier><identifier>DOI: 10.1609/aimag.v33i4.2432</identifier><language>eng</language><publisher>Menlo Park, CA: American Association for Artificial Intelligence</publisher><subject>Algorithm ; Algorithms ; Applied sciences ; Artificial intelligence ; Counterterrorism ; Crime prevention ; Deterrence ; Exact sciences and technology ; Expected utility ; Fare collection systems ; Fares ; Game theory ; Games ; Ground, air and sea transportation, marine construction ; Linear programming ; Local transit ; Methods ; Operational research and scientific management ; Operational research. Management science ; Optimization techniques ; Probability distribution ; Railway transportation and traffic ; Schedules ; Scheduling ; Scheduling (Management) ; Studies ; Technology application ; Theory</subject><ispartof>The AI magazine, 2012-12, Vol.33 (4), p.59-72</ispartof><rights>2012 The Authors. AI Magazine published by John Wiley &amp; Sons Ltd on behalf of Association for the Advancement of Artificial Intelligence</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 American Association for Artificial Intelligence</rights><rights>COPYRIGHT 2012 American Association for Artificial Intelligence</rights><rights>Copyright Association for the Advancement of Artificial Intelligence Winter 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6675-7f475321f3f0cf464bdd9d1a31b343af1b5d41998ba1a7efcb8094ccdc0c1b93</citedby><cites>FETCH-LOGICAL-c6675-7f475321f3f0cf464bdd9d1a31b343af1b5d41998ba1a7efcb8094ccdc0c1b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26778036$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Zhengyu</creatorcontrib><creatorcontrib>Jiang, Albert Xin</creatorcontrib><creatorcontrib>Tambe, Milind</creatorcontrib><creatorcontrib>Kiekintveld, Christopher</creatorcontrib><creatorcontrib>Leyton‐Brown, Kevin</creatorcontrib><creatorcontrib>Sandholm, Tuomas</creatorcontrib><creatorcontrib>Sullivan, John P.</creatorcontrib><title>TRUSTS: Scheduling Randomized Patrols for Fare Inspection in Transit Systems Using Game Theory</title><title>The AI magazine</title><addtitle>AI Magazine</addtitle><description>In proof‐of‐payment transit systems, passengers are legally required to purchase tickets before entering but are not physically forced to do so. Instead, patrol units move about the transit system, inspecting the tickets of passengers, who face fines if caught fare evading. The deterrence of fare evasion depends on the unpredictability and effectiveness of the patrols. In this article, we present TRUSTS, an application for scheduling randomized patrols for fare inspection in transit systems. TRUSTS models the problem of computing patrol strategies as a leader‐follower Stackelberg game where the objective is to deter fare evasion and hence maximize revenue. This problem differs from previously studied Stackelberg settings in that the leader strategies must satisfy massive temporal and spatial constraints; moreover, unlike in these counterterrorism‐motivated Stackelberg applications, a large fraction of the ridership might realistically consider fare evasion, and so the number of followers is potentially huge. A third key novelty in our work is deliberate simplification of leader strategies to make patrols easier to execute. We present an efficient algorithm for computing such patrol strategies and present experimental results using real‐world ridership data from the Los Angeles Metro Rail system. The Los Angeles County Sheriff's Department is currently carrying out trials of TRUSTS.</description><subject>Algorithm</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Counterterrorism</subject><subject>Crime prevention</subject><subject>Deterrence</subject><subject>Exact sciences and technology</subject><subject>Expected utility</subject><subject>Fare collection systems</subject><subject>Fares</subject><subject>Game theory</subject><subject>Games</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Linear programming</subject><subject>Local transit</subject><subject>Methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization techniques</subject><subject>Probability distribution</subject><subject>Railway transportation and traffic</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Scheduling (Management)</subject><subject>Studies</subject><subject>Technology application</subject><subject>Theory</subject><issn>0738-4602</issn><issn>2371-9621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqV0tGL0zAcB_AiCs7Tdx8D4oNgZ9JkaePbbrg5GJ6svVdDmiZdjrbZJa3e7q83uw11MPSkkEL4fBPI7xtFrxEcIwrZB2FaUY-_Y2zIOCE4eRKNEpyimNEEPY1GMMVZTChMnkcvvL-BENIM01H0rVhf50X-EeRyo6qhMV0N1qKrbGvuVQW-it7ZxgNtHZgLp8Cy81sle2M7YDpQONF504N853vVenDt9_mFaBUoNsq63cvomRaNV6-O_4uomH8qZp_j1dViOZuuYklpOolTTdIJTpDGGkpNKCmrilVIYFRigoVG5aQiiLGsFEikSssyg4xIWUkoUcnwRfTmcOzW2dtB-Z7f2MF14UaOMMpSRhlNf6taNIqbTtveCdkaL_kUI0IIhkkSVHxG1apTTjS2U9qE7RM_PuPDV6nWyLOBdyeBYHp119di8J4v8_V_2C-Pt5eLR9tssfrbgxyttE2jasXDHGdXp_79H74cQieUD4s39ab3hytOODxw6az3Tmm-daHLbscR5Ptq84dq84dq8321Q-TtcdzCS9Ho0EJp_K9cQtM0g5gGxw7uRxjB7p_n8ul0urycQ5iFMv4EIQwFAA</recordid><startdate>20121222</startdate><enddate>20121222</enddate><creator>Yin, Zhengyu</creator><creator>Jiang, Albert Xin</creator><creator>Tambe, Milind</creator><creator>Kiekintveld, Christopher</creator><creator>Leyton‐Brown, Kevin</creator><creator>Sandholm, Tuomas</creator><creator>Sullivan, John P.</creator><general>American Association for Artificial Intelligence</general><general>John Wiley &amp; Sons, Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>8GL</scope><scope>IBG</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20121222</creationdate><title>TRUSTS: Scheduling Randomized Patrols for Fare Inspection in Transit Systems Using Game Theory</title><author>Yin, Zhengyu ; Jiang, Albert Xin ; Tambe, Milind ; Kiekintveld, Christopher ; Leyton‐Brown, Kevin ; Sandholm, Tuomas ; Sullivan, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6675-7f475321f3f0cf464bdd9d1a31b343af1b5d41998ba1a7efcb8094ccdc0c1b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Counterterrorism</topic><topic>Crime prevention</topic><topic>Deterrence</topic><topic>Exact sciences and technology</topic><topic>Expected utility</topic><topic>Fare collection systems</topic><topic>Fares</topic><topic>Game theory</topic><topic>Games</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Linear programming</topic><topic>Local transit</topic><topic>Methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization techniques</topic><topic>Probability distribution</topic><topic>Railway transportation and traffic</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Scheduling (Management)</topic><topic>Studies</topic><topic>Technology application</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Zhengyu</creatorcontrib><creatorcontrib>Jiang, Albert Xin</creatorcontrib><creatorcontrib>Tambe, Milind</creatorcontrib><creatorcontrib>Kiekintveld, Christopher</creatorcontrib><creatorcontrib>Leyton‐Brown, Kevin</creatorcontrib><creatorcontrib>Sandholm, Tuomas</creatorcontrib><creatorcontrib>Sullivan, John P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The AI magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Zhengyu</au><au>Jiang, Albert Xin</au><au>Tambe, Milind</au><au>Kiekintveld, Christopher</au><au>Leyton‐Brown, Kevin</au><au>Sandholm, Tuomas</au><au>Sullivan, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRUSTS: Scheduling Randomized Patrols for Fare Inspection in Transit Systems Using Game Theory</atitle><jtitle>The AI magazine</jtitle><addtitle>AI Magazine</addtitle><date>2012-12-22</date><risdate>2012</risdate><volume>33</volume><issue>4</issue><spage>59</spage><epage>72</epage><pages>59-72</pages><issn>0738-4602</issn><eissn>2371-9621</eissn><abstract>In proof‐of‐payment transit systems, passengers are legally required to purchase tickets before entering but are not physically forced to do so. Instead, patrol units move about the transit system, inspecting the tickets of passengers, who face fines if caught fare evading. The deterrence of fare evasion depends on the unpredictability and effectiveness of the patrols. In this article, we present TRUSTS, an application for scheduling randomized patrols for fare inspection in transit systems. TRUSTS models the problem of computing patrol strategies as a leader‐follower Stackelberg game where the objective is to deter fare evasion and hence maximize revenue. This problem differs from previously studied Stackelberg settings in that the leader strategies must satisfy massive temporal and spatial constraints; moreover, unlike in these counterterrorism‐motivated Stackelberg applications, a large fraction of the ridership might realistically consider fare evasion, and so the number of followers is potentially huge. A third key novelty in our work is deliberate simplification of leader strategies to make patrols easier to execute. We present an efficient algorithm for computing such patrol strategies and present experimental results using real‐world ridership data from the Los Angeles Metro Rail system. The Los Angeles County Sheriff's Department is currently carrying out trials of TRUSTS.</abstract><cop>Menlo Park, CA</cop><pub>American Association for Artificial Intelligence</pub><doi>10.1609/aimag.v33i4.2432</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0738-4602
ispartof The AI magazine, 2012-12, Vol.33 (4), p.59-72
issn 0738-4602
2371-9621
language eng
recordid cdi_proquest_journals_1318796967
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithm
Algorithms
Applied sciences
Artificial intelligence
Counterterrorism
Crime prevention
Deterrence
Exact sciences and technology
Expected utility
Fare collection systems
Fares
Game theory
Games
Ground, air and sea transportation, marine construction
Linear programming
Local transit
Methods
Operational research and scientific management
Operational research. Management science
Optimization techniques
Probability distribution
Railway transportation and traffic
Schedules
Scheduling
Scheduling (Management)
Studies
Technology application
Theory
title TRUSTS: Scheduling Randomized Patrols for Fare Inspection in Transit Systems Using Game Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRUSTS:%20Scheduling%20Randomized%20Patrols%20for%20Fare%20Inspection%20in%20Transit%20Systems%20Using%20Game%20Theory&rft.jtitle=The%20AI%20magazine&rft.au=Yin,%20Zhengyu&rft.date=2012-12-22&rft.volume=33&rft.issue=4&rft.spage=59&rft.epage=72&rft.pages=59-72&rft.issn=0738-4602&rft.eissn=2371-9621&rft_id=info:doi/10.1609/aimag.v33i4.2432&rft_dat=%3Cgale_proqu%3EA314443022%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1318796967&rft_id=info:pmid/&rft_galeid=A314443022&rfr_iscdi=true