Trees having many minimal dominating sets

We disprove a conjecture by Skupień that every tree of order n has at most 2n/2 minimal dominating sets. We construct a family of trees of both parities of the order for which the number of minimal dominating sets exceeds 1.4167n. We also provide an algorithm for listing all minimal dominating sets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2013-04, Vol.113 (8), p.276-279
1. Verfasser: Krzywkowski, Marcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 8
container_start_page 276
container_title Information processing letters
container_volume 113
creator Krzywkowski, Marcin
description We disprove a conjecture by Skupień that every tree of order n has at most 2n/2 minimal dominating sets. We construct a family of trees of both parities of the order for which the number of minimal dominating sets exceeds 1.4167n. We also provide an algorithm for listing all minimal dominating sets of a tree in time O(1.4656n). This implies that every tree has at most 1.4656n minimal dominating sets. ► We disprove a conjecture that every tree of order n has at most 2n/2 minimal dominating sets. ► We establish 1.4167n to be a lower bound on the running time of an algorithm for listing all m-d sets of a given tree. ► We provide an algorithm for listing all m-d sets of a tree of order n in time O(1.4656n). ► The above implies that every tree has at most 1.4656n minimal dominating sets.
doi_str_mv 10.1016/j.ipl.2013.01.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1316192562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019013000380</els_id><sourcerecordid>2915679371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-24f8b827497a026278fc39846586ecc05b4f43fff3698c3f84be45667180cebf3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcIvEiUPCru04jjihipdUiUs5W4m7BkdtUuy0Uv8eR-XMaVejmd2ZYewWoUBA9dAVfrcpOKAoAAvgcMZmqCueK8T6nM0gQTlgDZfsKsYOAJQU1YzdrwJRzL6bg--_sm3TH7Ot7_222WTrIW3NOOGRxnjNLlyziXTzN-fs8-V5tXjLlx-v74unZW4FL8ecS6dbzStZVw1wxSvtrKi1VKVWZC2UrXRSOOeEqrUVTsuWZKlUhRostU7M2d3p7i4MP3uKo-mGfejTS4MCFda8VDyx8MSyYYgxkDO7kFyHo0EwUyOmM6kRMzViAE2KnzSPJw0l-wdPwUTrqbe09oHsaNaD_0f9C8krZtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1316192562</pqid></control><display><type>article</type><title>Trees having many minimal dominating sets</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Krzywkowski, Marcin</creator><creatorcontrib>Krzywkowski, Marcin</creatorcontrib><description>We disprove a conjecture by Skupień that every tree of order n has at most 2n/2 minimal dominating sets. We construct a family of trees of both parities of the order for which the number of minimal dominating sets exceeds 1.4167n. We also provide an algorithm for listing all minimal dominating sets of a tree in time O(1.4656n). This implies that every tree has at most 1.4656n minimal dominating sets. ► We disprove a conjecture that every tree of order n has at most 2n/2 minimal dominating sets. ► We establish 1.4167n to be a lower bound on the running time of an algorithm for listing all m-d sets of a given tree. ► We provide an algorithm for listing all m-d sets of a tree of order n in time O(1.4656n). ► The above implies that every tree has at most 1.4656n minimal dominating sets.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2013.01.020</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Combinatorial bound ; Combinatorial problems ; Exponential algorithm ; Graph theory ; Listing algorithm ; Minimal dominating set ; Set theory ; Studies ; Tree</subject><ispartof>Information processing letters, 2013-04, Vol.113 (8), p.276-279</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 30, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-24f8b827497a026278fc39846586ecc05b4f43fff3698c3f84be45667180cebf3</citedby><cites>FETCH-LOGICAL-c325t-24f8b827497a026278fc39846586ecc05b4f43fff3698c3f84be45667180cebf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipl.2013.01.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Krzywkowski, Marcin</creatorcontrib><title>Trees having many minimal dominating sets</title><title>Information processing letters</title><description>We disprove a conjecture by Skupień that every tree of order n has at most 2n/2 minimal dominating sets. We construct a family of trees of both parities of the order for which the number of minimal dominating sets exceeds 1.4167n. We also provide an algorithm for listing all minimal dominating sets of a tree in time O(1.4656n). This implies that every tree has at most 1.4656n minimal dominating sets. ► We disprove a conjecture that every tree of order n has at most 2n/2 minimal dominating sets. ► We establish 1.4167n to be a lower bound on the running time of an algorithm for listing all m-d sets of a given tree. ► We provide an algorithm for listing all m-d sets of a tree of order n in time O(1.4656n). ► The above implies that every tree has at most 1.4656n minimal dominating sets.</description><subject>Algorithms</subject><subject>Combinatorial bound</subject><subject>Combinatorial problems</subject><subject>Exponential algorithm</subject><subject>Graph theory</subject><subject>Listing algorithm</subject><subject>Minimal dominating set</subject><subject>Set theory</subject><subject>Studies</subject><subject>Tree</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcIvEiUPCru04jjihipdUiUs5W4m7BkdtUuy0Uv8eR-XMaVejmd2ZYewWoUBA9dAVfrcpOKAoAAvgcMZmqCueK8T6nM0gQTlgDZfsKsYOAJQU1YzdrwJRzL6bg--_sm3TH7Ot7_222WTrIW3NOOGRxnjNLlyziXTzN-fs8-V5tXjLlx-v74unZW4FL8ecS6dbzStZVw1wxSvtrKi1VKVWZC2UrXRSOOeEqrUVTsuWZKlUhRostU7M2d3p7i4MP3uKo-mGfejTS4MCFda8VDyx8MSyYYgxkDO7kFyHo0EwUyOmM6kRMzViAE2KnzSPJw0l-wdPwUTrqbe09oHsaNaD_0f9C8krZtY</recordid><startdate>20130430</startdate><enddate>20130430</enddate><creator>Krzywkowski, Marcin</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130430</creationdate><title>Trees having many minimal dominating sets</title><author>Krzywkowski, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-24f8b827497a026278fc39846586ecc05b4f43fff3698c3f84be45667180cebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Combinatorial bound</topic><topic>Combinatorial problems</topic><topic>Exponential algorithm</topic><topic>Graph theory</topic><topic>Listing algorithm</topic><topic>Minimal dominating set</topic><topic>Set theory</topic><topic>Studies</topic><topic>Tree</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krzywkowski, Marcin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzywkowski, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trees having many minimal dominating sets</atitle><jtitle>Information processing letters</jtitle><date>2013-04-30</date><risdate>2013</risdate><volume>113</volume><issue>8</issue><spage>276</spage><epage>279</epage><pages>276-279</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>We disprove a conjecture by Skupień that every tree of order n has at most 2n/2 minimal dominating sets. We construct a family of trees of both parities of the order for which the number of minimal dominating sets exceeds 1.4167n. We also provide an algorithm for listing all minimal dominating sets of a tree in time O(1.4656n). This implies that every tree has at most 1.4656n minimal dominating sets. ► We disprove a conjecture that every tree of order n has at most 2n/2 minimal dominating sets. ► We establish 1.4167n to be a lower bound on the running time of an algorithm for listing all m-d sets of a given tree. ► We provide an algorithm for listing all m-d sets of a tree of order n in time O(1.4656n). ► The above implies that every tree has at most 1.4656n minimal dominating sets.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2013.01.020</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2013-04, Vol.113 (8), p.276-279
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_journals_1316192562
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Combinatorial bound
Combinatorial problems
Exponential algorithm
Graph theory
Listing algorithm
Minimal dominating set
Set theory
Studies
Tree
title Trees having many minimal dominating sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trees%20having%20many%20minimal%20dominating%20sets&rft.jtitle=Information%20processing%20letters&rft.au=Krzywkowski,%20Marcin&rft.date=2013-04-30&rft.volume=113&rft.issue=8&rft.spage=276&rft.epage=279&rft.pages=276-279&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2013.01.020&rft_dat=%3Cproquest_cross%3E2915679371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1316192562&rft_id=info:pmid/&rft_els_id=S0020019013000380&rfr_iscdi=true