Microseconds Matter: e1000405
GKLT activates with only small depolarization [26] and sets the time constant of the membrane by reducing the membrane resistance to unusually low values. Because of the GKLT, coincidence detectors typically have very low input resistances and thus very rapid responses to changes in voltage (τ of 0....
Gespeichert in:
Veröffentlicht in: | PLoS biology 2010-06, Vol.8 (6) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | PLoS biology |
container_volume | 8 |
creator | Carr, Catherine E MacLeod, Katrina M |
description | GKLT activates with only small depolarization [26] and sets the time constant of the membrane by reducing the membrane resistance to unusually low values. Because of the GKLT, coincidence detectors typically have very low input resistances and thus very rapid responses to changes in voltage (τ of 0.3-1.5 ms). The longer the initial rise of the compound synaptic potential, the more time GKLT has to activate, the larger the conductance will be at the time of the peak in the EPSP, suppressing the voltage response, and reducing the likelihood of firing an action potential. [...]although the source(s) of the asymmetry in medial superior olive inputs remains open to debate, one major point emerges from the Jercog et al. study, which is that asymmetry in bilateral EPSP shapes could greatly influence coincidence detection and neural codes for ITD. |
doi_str_mv | 10.1371/journal.pbio.1000405 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1314363945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906667581</sourcerecordid><originalsourceid>FETCH-proquest_journals_13143639453</originalsourceid><addsrcrecordid>eNpjYJAxNNAzNDY31M_KLy3KS8zRK0jKzNczNDAwMDEwZWLgNDQ1MdU1t7AwZQGzTXQtDc2NORi4iouzDAyMjCyNLDgZhH0zk4vyi1OT8_NSihV8E0tKUot4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJPNTC4nhDY0MTYzNjSxNTY-JUAQBxxzGx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1314363945</pqid></control><display><type>article</type><title>Microseconds Matter: e1000405</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Carr, Catherine E ; MacLeod, Katrina M</creator><creatorcontrib>Carr, Catherine E ; MacLeod, Katrina M</creatorcontrib><description>GKLT activates with only small depolarization [26] and sets the time constant of the membrane by reducing the membrane resistance to unusually low values. Because of the GKLT, coincidence detectors typically have very low input resistances and thus very rapid responses to changes in voltage (τ of 0.3-1.5 ms). The longer the initial rise of the compound synaptic potential, the more time GKLT has to activate, the larger the conductance will be at the time of the peak in the EPSP, suppressing the voltage response, and reducing the likelihood of firing an action potential. [...]although the source(s) of the asymmetry in medial superior olive inputs remains open to debate, one major point emerges from the Jercog et al. study, which is that asymmetry in bilateral EPSP shapes could greatly influence coincidence detection and neural codes for ITD.</description><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1000405</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Asymmetry ; Neurons ; Noise</subject><ispartof>PLoS biology, 2010-06, Vol.8 (6)</ispartof><rights>2010 Carr, MacLeod. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Carr CE, MacLeod KM (2010) Microseconds Matter. PLoS Biol 8(6): e1000405. doi:10.1371/journal.pbio.1000405</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Carr, Catherine E</creatorcontrib><creatorcontrib>MacLeod, Katrina M</creatorcontrib><title>Microseconds Matter: e1000405</title><title>PLoS biology</title><description>GKLT activates with only small depolarization [26] and sets the time constant of the membrane by reducing the membrane resistance to unusually low values. Because of the GKLT, coincidence detectors typically have very low input resistances and thus very rapid responses to changes in voltage (τ of 0.3-1.5 ms). The longer the initial rise of the compound synaptic potential, the more time GKLT has to activate, the larger the conductance will be at the time of the peak in the EPSP, suppressing the voltage response, and reducing the likelihood of firing an action potential. [...]although the source(s) of the asymmetry in medial superior olive inputs remains open to debate, one major point emerges from the Jercog et al. study, which is that asymmetry in bilateral EPSP shapes could greatly influence coincidence detection and neural codes for ITD.</description><subject>Asymmetry</subject><subject>Neurons</subject><subject>Noise</subject><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYJAxNNAzNDY31M_KLy3KS8zRK0jKzNczNDAwMDEwZWLgNDQ1MdU1t7AwZQGzTXQtDc2NORi4iouzDAyMjCyNLDgZhH0zk4vyi1OT8_NSihV8E0tKUot4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJPNTC4nhDY0MTYzNjSxNTY-JUAQBxxzGx</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Carr, Catherine E</creator><creator>MacLeod, Katrina M</creator><general>Public Library of Science</general><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope></search><sort><creationdate>20100601</creationdate><title>Microseconds Matter</title><author>Carr, Catherine E ; MacLeod, Katrina M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_13143639453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Asymmetry</topic><topic>Neurons</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carr, Catherine E</creatorcontrib><creatorcontrib>MacLeod, Katrina M</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carr, Catherine E</au><au>MacLeod, Katrina M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microseconds Matter: e1000405</atitle><jtitle>PLoS biology</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>8</volume><issue>6</issue><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>GKLT activates with only small depolarization [26] and sets the time constant of the membrane by reducing the membrane resistance to unusually low values. Because of the GKLT, coincidence detectors typically have very low input resistances and thus very rapid responses to changes in voltage (τ of 0.3-1.5 ms). The longer the initial rise of the compound synaptic potential, the more time GKLT has to activate, the larger the conductance will be at the time of the peak in the EPSP, suppressing the voltage response, and reducing the likelihood of firing an action potential. [...]although the source(s) of the asymmetry in medial superior olive inputs remains open to debate, one major point emerges from the Jercog et al. study, which is that asymmetry in bilateral EPSP shapes could greatly influence coincidence detection and neural codes for ITD.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pbio.1000405</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1544-9173 |
ispartof | PLoS biology, 2010-06, Vol.8 (6) |
issn | 1544-9173 1545-7885 |
language | eng |
recordid | cdi_proquest_journals_1314363945 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Asymmetry Neurons Noise |
title | Microseconds Matter: e1000405 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microseconds%20Matter:%20e1000405&rft.jtitle=PLoS%20biology&rft.au=Carr,%20Catherine%20E&rft.date=2010-06-01&rft.volume=8&rft.issue=6&rft.issn=1544-9173&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1000405&rft_dat=%3Cproquest%3E2906667581%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1314363945&rft_id=info:pmid/&rfr_iscdi=true |