Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice: e1000764

Derepression of transposable elements (TEs) in the course of epigenetic reprogramming of the mouse embryonic germline necessitates the existence of a robust defense that is comprised of PIWI/piRNA pathway and de novo DNA methylation machinery. To gain further insight into biogenesis and function of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2009-12, Vol.5 (12)
Hauptverfasser: Aravin, Alexei A, Heijden, W vander, Castañeda, Julio, Vagin, Vasily V, Hannon, Gregory J, Bortvin, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title PLoS genetics
container_volume 5
creator Aravin, Alexei A
Heijden, W vander
Castañeda, Julio
Vagin, Vasily V
Hannon, Gregory J
Bortvin, Alex
description Derepression of transposable elements (TEs) in the course of epigenetic reprogramming of the mouse embryonic germline necessitates the existence of a robust defense that is comprised of PIWI/piRNA pathway and de novo DNA methylation machinery. To gain further insight into biogenesis and function of piRNAs, we studied the intracellular localization of piRNA pathway components and used the combination of genetic, molecular, and cell biological approaches to examine the performance of the piRNA pathway in germ cells of mice lacking Maelstrom (MAEL), an evolutionarily conserved protein implicated in transposon silencing in fruit flies and mice. Here we show that principal components of the fetal piRNA pathway, MILI and MIWI2 proteins, localize to two distinct types of germinal cytoplasmic granules and exhibit differential association with components of the mRNA degradation/translational repression machinery. The first type of granules, pi-bodies, contains the MILI-TDRD1 module of the piRNA pathway and is likely equivalent to the enigmatic "cementing material" first described in electron micrographs of rat gonocytes over 35 years ago. The second type of granules, piP-bodies, harbors the MIWI2-TDRD9-MAEL module of the piRNA pathway and signature components of P-bodies, GW182, DCP1a, DDX6/p54, and XRN1 proteins. piP-bodies are found predominantly in the proximity of pi-bodies and the two frequently share mouse VASA homolog (MVH) protein, an RNA helicase. In Mael-mutant gonocytes, MIWI2, TDRD9, and MVH are lost from piP-bodies, whereas no effects on pi-body composition are observed. Further analysis revealed that MAEL appears to specifically facilitate MIWI2-dependent aspects of the piRNA pathway including biogenesis of secondary piRNAs, de novo DNA methylation, and efficient downregulation of TEs. Cumulatively, our data reveal elaborate cytoplasmic compartmentalization of the fetal piRNA pathway that relies on MAEL function.
doi_str_mv 10.1371/journal.pgen.1000764
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1313571736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904832011</sourcerecordid><originalsourceid>FETCH-proquest_journals_13135717363</originalsourceid><addsrcrecordid>eNqNjk0LgjAAhkcUZB__oMOgs7Yx5_IYknQpIrrLkJmTuS03Cfv1dbB7p_fh4Tm8AGwwijBheNeYvtNcRfYhdIQRQiyJJyDAlJKQxSie_pikaA4WzjUIEbpPWQCybPDGKu5aWcLMtJZ3vhXacyXf3EujoamgrwXMxddBK2-XA7xyX7_4AKWGZ1mKFZhVXDmxHncJtvnxnp1C25lnL5wvxoOuwAQTyjAjCfmv-gCpx0M1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313571736</pqid></control><display><type>article</type><title>Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice: e1000764</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Aravin, Alexei A ; Heijden, W vander ; Castañeda, Julio ; Vagin, Vasily V ; Hannon, Gregory J ; Bortvin, Alex</creator><creatorcontrib>Aravin, Alexei A ; Heijden, W vander ; Castañeda, Julio ; Vagin, Vasily V ; Hannon, Gregory J ; Bortvin, Alex</creatorcontrib><description>Derepression of transposable elements (TEs) in the course of epigenetic reprogramming of the mouse embryonic germline necessitates the existence of a robust defense that is comprised of PIWI/piRNA pathway and de novo DNA methylation machinery. To gain further insight into biogenesis and function of piRNAs, we studied the intracellular localization of piRNA pathway components and used the combination of genetic, molecular, and cell biological approaches to examine the performance of the piRNA pathway in germ cells of mice lacking Maelstrom (MAEL), an evolutionarily conserved protein implicated in transposon silencing in fruit flies and mice. Here we show that principal components of the fetal piRNA pathway, MILI and MIWI2 proteins, localize to two distinct types of germinal cytoplasmic granules and exhibit differential association with components of the mRNA degradation/translational repression machinery. The first type of granules, pi-bodies, contains the MILI-TDRD1 module of the piRNA pathway and is likely equivalent to the enigmatic "cementing material" first described in electron micrographs of rat gonocytes over 35 years ago. The second type of granules, piP-bodies, harbors the MIWI2-TDRD9-MAEL module of the piRNA pathway and signature components of P-bodies, GW182, DCP1a, DDX6/p54, and XRN1 proteins. piP-bodies are found predominantly in the proximity of pi-bodies and the two frequently share mouse VASA homolog (MVH) protein, an RNA helicase. In Mael-mutant gonocytes, MIWI2, TDRD9, and MVH are lost from piP-bodies, whereas no effects on pi-body composition are observed. Further analysis revealed that MAEL appears to specifically facilitate MIWI2-dependent aspects of the piRNA pathway including biogenesis of secondary piRNAs, de novo DNA methylation, and efficient downregulation of TEs. Cumulatively, our data reveal elaborate cytoplasmic compartmentalization of the fetal piRNA pathway that relies on MAEL function.</description><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1000764</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Biosynthesis ; Cell cycle ; DNA methylation ; Genetics ; Genomes ; Labeling ; Proteins</subject><ispartof>PLoS genetics, 2009-12, Vol.5 (12)</ispartof><rights>2009 Aravin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Aravin AA, van der Heijden GW, Castañeda J, Vagin VV, Hannon GJ, et al. (2009) Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice. PLoS Genet 5(12): e1000764. doi:10.1371/journal.pgen.1000764</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Aravin, Alexei A</creatorcontrib><creatorcontrib>Heijden, W vander</creatorcontrib><creatorcontrib>Castañeda, Julio</creatorcontrib><creatorcontrib>Vagin, Vasily V</creatorcontrib><creatorcontrib>Hannon, Gregory J</creatorcontrib><creatorcontrib>Bortvin, Alex</creatorcontrib><title>Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice: e1000764</title><title>PLoS genetics</title><description>Derepression of transposable elements (TEs) in the course of epigenetic reprogramming of the mouse embryonic germline necessitates the existence of a robust defense that is comprised of PIWI/piRNA pathway and de novo DNA methylation machinery. To gain further insight into biogenesis and function of piRNAs, we studied the intracellular localization of piRNA pathway components and used the combination of genetic, molecular, and cell biological approaches to examine the performance of the piRNA pathway in germ cells of mice lacking Maelstrom (MAEL), an evolutionarily conserved protein implicated in transposon silencing in fruit flies and mice. Here we show that principal components of the fetal piRNA pathway, MILI and MIWI2 proteins, localize to two distinct types of germinal cytoplasmic granules and exhibit differential association with components of the mRNA degradation/translational repression machinery. The first type of granules, pi-bodies, contains the MILI-TDRD1 module of the piRNA pathway and is likely equivalent to the enigmatic "cementing material" first described in electron micrographs of rat gonocytes over 35 years ago. The second type of granules, piP-bodies, harbors the MIWI2-TDRD9-MAEL module of the piRNA pathway and signature components of P-bodies, GW182, DCP1a, DDX6/p54, and XRN1 proteins. piP-bodies are found predominantly in the proximity of pi-bodies and the two frequently share mouse VASA homolog (MVH) protein, an RNA helicase. In Mael-mutant gonocytes, MIWI2, TDRD9, and MVH are lost from piP-bodies, whereas no effects on pi-body composition are observed. Further analysis revealed that MAEL appears to specifically facilitate MIWI2-dependent aspects of the piRNA pathway including biogenesis of secondary piRNAs, de novo DNA methylation, and efficient downregulation of TEs. Cumulatively, our data reveal elaborate cytoplasmic compartmentalization of the fetal piRNA pathway that relies on MAEL function.</description><subject>Biosynthesis</subject><subject>Cell cycle</subject><subject>DNA methylation</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Labeling</subject><subject>Proteins</subject><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjk0LgjAAhkcUZB__oMOgs7Yx5_IYknQpIrrLkJmTuS03Cfv1dbB7p_fh4Tm8AGwwijBheNeYvtNcRfYhdIQRQiyJJyDAlJKQxSie_pikaA4WzjUIEbpPWQCybPDGKu5aWcLMtJZ3vhXacyXf3EujoamgrwXMxddBK2-XA7xyX7_4AKWGZ1mKFZhVXDmxHncJtvnxnp1C25lnL5wvxoOuwAQTyjAjCfmv-gCpx0M1</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Aravin, Alexei A</creator><creator>Heijden, W vander</creator><creator>Castañeda, Julio</creator><creator>Vagin, Vasily V</creator><creator>Hannon, Gregory J</creator><creator>Bortvin, Alex</creator><general>Public Library of Science</general><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope></search><sort><creationdate>20091201</creationdate><title>Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice</title><author>Aravin, Alexei A ; Heijden, W vander ; Castañeda, Julio ; Vagin, Vasily V ; Hannon, Gregory J ; Bortvin, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_13135717363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biosynthesis</topic><topic>Cell cycle</topic><topic>DNA methylation</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Labeling</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aravin, Alexei A</creatorcontrib><creatorcontrib>Heijden, W vander</creatorcontrib><creatorcontrib>Castañeda, Julio</creatorcontrib><creatorcontrib>Vagin, Vasily V</creatorcontrib><creatorcontrib>Hannon, Gregory J</creatorcontrib><creatorcontrib>Bortvin, Alex</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aravin, Alexei A</au><au>Heijden, W vander</au><au>Castañeda, Julio</au><au>Vagin, Vasily V</au><au>Hannon, Gregory J</au><au>Bortvin, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice: e1000764</atitle><jtitle>PLoS genetics</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>5</volume><issue>12</issue><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Derepression of transposable elements (TEs) in the course of epigenetic reprogramming of the mouse embryonic germline necessitates the existence of a robust defense that is comprised of PIWI/piRNA pathway and de novo DNA methylation machinery. To gain further insight into biogenesis and function of piRNAs, we studied the intracellular localization of piRNA pathway components and used the combination of genetic, molecular, and cell biological approaches to examine the performance of the piRNA pathway in germ cells of mice lacking Maelstrom (MAEL), an evolutionarily conserved protein implicated in transposon silencing in fruit flies and mice. Here we show that principal components of the fetal piRNA pathway, MILI and MIWI2 proteins, localize to two distinct types of germinal cytoplasmic granules and exhibit differential association with components of the mRNA degradation/translational repression machinery. The first type of granules, pi-bodies, contains the MILI-TDRD1 module of the piRNA pathway and is likely equivalent to the enigmatic "cementing material" first described in electron micrographs of rat gonocytes over 35 years ago. The second type of granules, piP-bodies, harbors the MIWI2-TDRD9-MAEL module of the piRNA pathway and signature components of P-bodies, GW182, DCP1a, DDX6/p54, and XRN1 proteins. piP-bodies are found predominantly in the proximity of pi-bodies and the two frequently share mouse VASA homolog (MVH) protein, an RNA helicase. In Mael-mutant gonocytes, MIWI2, TDRD9, and MVH are lost from piP-bodies, whereas no effects on pi-body composition are observed. Further analysis revealed that MAEL appears to specifically facilitate MIWI2-dependent aspects of the piRNA pathway including biogenesis of secondary piRNAs, de novo DNA methylation, and efficient downregulation of TEs. Cumulatively, our data reveal elaborate cytoplasmic compartmentalization of the fetal piRNA pathway that relies on MAEL function.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pgen.1000764</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7390
ispartof PLoS genetics, 2009-12, Vol.5 (12)
issn 1553-7390
1553-7404
language eng
recordid cdi_proquest_journals_1313571736
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biosynthesis
Cell cycle
DNA methylation
Genetics
Genomes
Labeling
Proteins
title Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice: e1000764
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytoplasmic%20Compartmentalization%20of%20the%20Fetal%20piRNA%20Pathway%20in%20Mice:%20e1000764&rft.jtitle=PLoS%20genetics&rft.au=Aravin,%20Alexei%20A&rft.date=2009-12-01&rft.volume=5&rft.issue=12&rft.issn=1553-7390&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1000764&rft_dat=%3Cproquest%3E2904832011%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313571736&rft_id=info:pmid/&rfr_iscdi=true