Constructing narrowest pathwise bootstrap prediction bands using threshold accepting
Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped predictio...
Gespeichert in:
Veröffentlicht in: | International journal of forecasting 2013-04, Vol.29 (2), p.221-233 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233 |
---|---|
container_issue | 2 |
container_start_page | 221 |
container_title | International journal of forecasting |
container_volume | 29 |
creator | Staszewska-Bystrova, Anna Winker, Peter |
description | Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped prediction bands. The resulting highly complex optimization problem is tackled using the local search heuristic of threshold accepting. A comparison with pointwise and asymptotic bands is provided, demonstrating superior properties of the proposed bands in small samples. Finally, a real application shows the practical implications of using an appropriate tool for generating the prediction bands. |
doi_str_mv | 10.1016/j.ijforecast.2012.09.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1313533780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169207012001197</els_id><sourcerecordid>2904830961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-c30cc46511689eafb739d253e01c9ea8d85b7062964c61d47df1489dc8e579033</originalsourceid><addsrcrecordid>eNqFkM1KxDAURoMoOI6-Q8B1603TNslSB_9AcDOuQ5qkTsrY1CR18O1NGcGlq3DhfN_NPQhhAiUB0t4MpRt6H6xWMZUVkKoEUQLUJ2hFOKsKXgGcolVGRVEBg3N0EeMAAA0jZIW2Gz_GFGad3PiORxWCP9iY8KTS7uCixZ33KQNqwlOwxmXOj7hTo4l4jksm7YKNO783WGltp6XnEp31ah_t1e-7Rm8P99vNU_Hy-vi8uX0pdE0gFZqC1nXbENJyYVXfMSpM1VALROeZG950DNpKtLVuiamZ6UnNhdHcNkwApWt0feydgv-c87fl4Ocw5pWSUEIbShmHTPEjpYOPMdheTsF9qPAtCcjFoRzkn0O5OJQgZHaYo3fHqM1XfDkbZNTOjjqLyHSSxrv_S34AoweBJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313533780</pqid></control><display><type>article</type><title>Constructing narrowest pathwise bootstrap prediction bands using threshold accepting</title><source>Elsevier ScienceDirect Journals</source><creator>Staszewska-Bystrova, Anna ; Winker, Peter</creator><creatorcontrib>Staszewska-Bystrova, Anna ; Winker, Peter</creatorcontrib><description>Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped prediction bands. The resulting highly complex optimization problem is tackled using the local search heuristic of threshold accepting. A comparison with pointwise and asymptotic bands is provided, demonstrating superior properties of the proposed bands in small samples. Finally, a real application shows the practical implications of using an appropriate tool for generating the prediction bands.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/j.ijforecast.2012.09.004</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bootstrap method ; Bootstrapping ; Economic forecasting ; Forecast path ; Heuristic ; Mathematical problems ; Optimization ; Prediction bands ; Studies ; Threshold accepting ; Vector autoregressive models</subject><ispartof>International journal of forecasting, 2013-04, Vol.29 (2), p.221-233</ispartof><rights>2012 International Institute of Forecasters</rights><rights>Copyright Elsevier Sequoia S.A. Apr/Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-c30cc46511689eafb739d253e01c9ea8d85b7062964c61d47df1489dc8e579033</citedby><cites>FETCH-LOGICAL-c410t-c30cc46511689eafb739d253e01c9ea8d85b7062964c61d47df1489dc8e579033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169207012001197$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Staszewska-Bystrova, Anna</creatorcontrib><creatorcontrib>Winker, Peter</creatorcontrib><title>Constructing narrowest pathwise bootstrap prediction bands using threshold accepting</title><title>International journal of forecasting</title><description>Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped prediction bands. The resulting highly complex optimization problem is tackled using the local search heuristic of threshold accepting. A comparison with pointwise and asymptotic bands is provided, demonstrating superior properties of the proposed bands in small samples. Finally, a real application shows the practical implications of using an appropriate tool for generating the prediction bands.</description><subject>Bootstrap method</subject><subject>Bootstrapping</subject><subject>Economic forecasting</subject><subject>Forecast path</subject><subject>Heuristic</subject><subject>Mathematical problems</subject><subject>Optimization</subject><subject>Prediction bands</subject><subject>Studies</subject><subject>Threshold accepting</subject><subject>Vector autoregressive models</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAURoMoOI6-Q8B1603TNslSB_9AcDOuQ5qkTsrY1CR18O1NGcGlq3DhfN_NPQhhAiUB0t4MpRt6H6xWMZUVkKoEUQLUJ2hFOKsKXgGcolVGRVEBg3N0EeMAAA0jZIW2Gz_GFGad3PiORxWCP9iY8KTS7uCixZ33KQNqwlOwxmXOj7hTo4l4jksm7YKNO783WGltp6XnEp31ah_t1e-7Rm8P99vNU_Hy-vi8uX0pdE0gFZqC1nXbENJyYVXfMSpM1VALROeZG950DNpKtLVuiamZ6UnNhdHcNkwApWt0feydgv-c87fl4Ocw5pWSUEIbShmHTPEjpYOPMdheTsF9qPAtCcjFoRzkn0O5OJQgZHaYo3fHqM1XfDkbZNTOjjqLyHSSxrv_S34AoweBJA</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Staszewska-Bystrova, Anna</creator><creator>Winker, Peter</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Constructing narrowest pathwise bootstrap prediction bands using threshold accepting</title><author>Staszewska-Bystrova, Anna ; Winker, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-c30cc46511689eafb739d253e01c9ea8d85b7062964c61d47df1489dc8e579033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bootstrap method</topic><topic>Bootstrapping</topic><topic>Economic forecasting</topic><topic>Forecast path</topic><topic>Heuristic</topic><topic>Mathematical problems</topic><topic>Optimization</topic><topic>Prediction bands</topic><topic>Studies</topic><topic>Threshold accepting</topic><topic>Vector autoregressive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staszewska-Bystrova, Anna</creatorcontrib><creatorcontrib>Winker, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staszewska-Bystrova, Anna</au><au>Winker, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing narrowest pathwise bootstrap prediction bands using threshold accepting</atitle><jtitle>International journal of forecasting</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>29</volume><issue>2</issue><spage>221</spage><epage>233</epage><pages>221-233</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped prediction bands. The resulting highly complex optimization problem is tackled using the local search heuristic of threshold accepting. A comparison with pointwise and asymptotic bands is provided, demonstrating superior properties of the proposed bands in small samples. Finally, a real application shows the practical implications of using an appropriate tool for generating the prediction bands.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijforecast.2012.09.004</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2070 |
ispartof | International journal of forecasting, 2013-04, Vol.29 (2), p.221-233 |
issn | 0169-2070 1872-8200 |
language | eng |
recordid | cdi_proquest_journals_1313533780 |
source | Elsevier ScienceDirect Journals |
subjects | Bootstrap method Bootstrapping Economic forecasting Forecast path Heuristic Mathematical problems Optimization Prediction bands Studies Threshold accepting Vector autoregressive models |
title | Constructing narrowest pathwise bootstrap prediction bands using threshold accepting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20narrowest%20pathwise%20bootstrap%20prediction%20bands%20using%20threshold%20accepting&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Staszewska-Bystrova,%20Anna&rft.date=2013-04-01&rft.volume=29&rft.issue=2&rft.spage=221&rft.epage=233&rft.pages=221-233&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/j.ijforecast.2012.09.004&rft_dat=%3Cproquest_cross%3E2904830961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313533780&rft_id=info:pmid/&rft_els_id=S0169207012001197&rfr_iscdi=true |