Constructing narrowest pathwise bootstrap prediction bands using threshold accepting

Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped predictio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2013-04, Vol.29 (2), p.221-233
Hauptverfasser: Staszewska-Bystrova, Anna, Winker, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 2
container_start_page 221
container_title International journal of forecasting
container_volume 29
creator Staszewska-Bystrova, Anna
Winker, Peter
description Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped prediction bands. The resulting highly complex optimization problem is tackled using the local search heuristic of threshold accepting. A comparison with pointwise and asymptotic bands is provided, demonstrating superior properties of the proposed bands in small samples. Finally, a real application shows the practical implications of using an appropriate tool for generating the prediction bands.
doi_str_mv 10.1016/j.ijforecast.2012.09.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1313533780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169207012001197</els_id><sourcerecordid>2904830961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-c30cc46511689eafb739d253e01c9ea8d85b7062964c61d47df1489dc8e579033</originalsourceid><addsrcrecordid>eNqFkM1KxDAURoMoOI6-Q8B1603TNslSB_9AcDOuQ5qkTsrY1CR18O1NGcGlq3DhfN_NPQhhAiUB0t4MpRt6H6xWMZUVkKoEUQLUJ2hFOKsKXgGcolVGRVEBg3N0EeMAAA0jZIW2Gz_GFGad3PiORxWCP9iY8KTS7uCixZ33KQNqwlOwxmXOj7hTo4l4jksm7YKNO783WGltp6XnEp31ah_t1e-7Rm8P99vNU_Hy-vi8uX0pdE0gFZqC1nXbENJyYVXfMSpM1VALROeZG950DNpKtLVuiamZ6UnNhdHcNkwApWt0feydgv-c87fl4Ocw5pWSUEIbShmHTPEjpYOPMdheTsF9qPAtCcjFoRzkn0O5OJQgZHaYo3fHqM1XfDkbZNTOjjqLyHSSxrv_S34AoweBJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313533780</pqid></control><display><type>article</type><title>Constructing narrowest pathwise bootstrap prediction bands using threshold accepting</title><source>Elsevier ScienceDirect Journals</source><creator>Staszewska-Bystrova, Anna ; Winker, Peter</creator><creatorcontrib>Staszewska-Bystrova, Anna ; Winker, Peter</creatorcontrib><description>Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped prediction bands. The resulting highly complex optimization problem is tackled using the local search heuristic of threshold accepting. A comparison with pointwise and asymptotic bands is provided, demonstrating superior properties of the proposed bands in small samples. Finally, a real application shows the practical implications of using an appropriate tool for generating the prediction bands.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/j.ijforecast.2012.09.004</identifier><identifier>CODEN: IJFOEK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bootstrap method ; Bootstrapping ; Economic forecasting ; Forecast path ; Heuristic ; Mathematical problems ; Optimization ; Prediction bands ; Studies ; Threshold accepting ; Vector autoregressive models</subject><ispartof>International journal of forecasting, 2013-04, Vol.29 (2), p.221-233</ispartof><rights>2012 International Institute of Forecasters</rights><rights>Copyright Elsevier Sequoia S.A. Apr/Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-c30cc46511689eafb739d253e01c9ea8d85b7062964c61d47df1489dc8e579033</citedby><cites>FETCH-LOGICAL-c410t-c30cc46511689eafb739d253e01c9ea8d85b7062964c61d47df1489dc8e579033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169207012001197$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Staszewska-Bystrova, Anna</creatorcontrib><creatorcontrib>Winker, Peter</creatorcontrib><title>Constructing narrowest pathwise bootstrap prediction bands using threshold accepting</title><title>International journal of forecasting</title><description>Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped prediction bands. The resulting highly complex optimization problem is tackled using the local search heuristic of threshold accepting. A comparison with pointwise and asymptotic bands is provided, demonstrating superior properties of the proposed bands in small samples. Finally, a real application shows the practical implications of using an appropriate tool for generating the prediction bands.</description><subject>Bootstrap method</subject><subject>Bootstrapping</subject><subject>Economic forecasting</subject><subject>Forecast path</subject><subject>Heuristic</subject><subject>Mathematical problems</subject><subject>Optimization</subject><subject>Prediction bands</subject><subject>Studies</subject><subject>Threshold accepting</subject><subject>Vector autoregressive models</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAURoMoOI6-Q8B1603TNslSB_9AcDOuQ5qkTsrY1CR18O1NGcGlq3DhfN_NPQhhAiUB0t4MpRt6H6xWMZUVkKoEUQLUJ2hFOKsKXgGcolVGRVEBg3N0EeMAAA0jZIW2Gz_GFGad3PiORxWCP9iY8KTS7uCixZ33KQNqwlOwxmXOj7hTo4l4jksm7YKNO783WGltp6XnEp31ah_t1e-7Rm8P99vNU_Hy-vi8uX0pdE0gFZqC1nXbENJyYVXfMSpM1VALROeZG950DNpKtLVuiamZ6UnNhdHcNkwApWt0feydgv-c87fl4Ocw5pWSUEIbShmHTPEjpYOPMdheTsF9qPAtCcjFoRzkn0O5OJQgZHaYo3fHqM1XfDkbZNTOjjqLyHSSxrv_S34AoweBJA</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Staszewska-Bystrova, Anna</creator><creator>Winker, Peter</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Constructing narrowest pathwise bootstrap prediction bands using threshold accepting</title><author>Staszewska-Bystrova, Anna ; Winker, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-c30cc46511689eafb739d253e01c9ea8d85b7062964c61d47df1489dc8e579033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bootstrap method</topic><topic>Bootstrapping</topic><topic>Economic forecasting</topic><topic>Forecast path</topic><topic>Heuristic</topic><topic>Mathematical problems</topic><topic>Optimization</topic><topic>Prediction bands</topic><topic>Studies</topic><topic>Threshold accepting</topic><topic>Vector autoregressive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staszewska-Bystrova, Anna</creatorcontrib><creatorcontrib>Winker, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staszewska-Bystrova, Anna</au><au>Winker, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing narrowest pathwise bootstrap prediction bands using threshold accepting</atitle><jtitle>International journal of forecasting</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>29</volume><issue>2</issue><spage>221</spage><epage>233</epage><pages>221-233</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><coden>IJFOEK</coden><abstract>Typically, prediction bands for path-forecasts are constructed pointwise, while inference relates to the whole forecasted path. In general, no closed form analytical solution is available for pathwise bands in finite samples. We consider a direct construction approach based on bootstrapped prediction bands. The resulting highly complex optimization problem is tackled using the local search heuristic of threshold accepting. A comparison with pointwise and asymptotic bands is provided, demonstrating superior properties of the proposed bands in small samples. Finally, a real application shows the practical implications of using an appropriate tool for generating the prediction bands.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijforecast.2012.09.004</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2070
ispartof International journal of forecasting, 2013-04, Vol.29 (2), p.221-233
issn 0169-2070
1872-8200
language eng
recordid cdi_proquest_journals_1313533780
source Elsevier ScienceDirect Journals
subjects Bootstrap method
Bootstrapping
Economic forecasting
Forecast path
Heuristic
Mathematical problems
Optimization
Prediction bands
Studies
Threshold accepting
Vector autoregressive models
title Constructing narrowest pathwise bootstrap prediction bands using threshold accepting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20narrowest%20pathwise%20bootstrap%20prediction%20bands%20using%20threshold%20accepting&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Staszewska-Bystrova,%20Anna&rft.date=2013-04-01&rft.volume=29&rft.issue=2&rft.spage=221&rft.epage=233&rft.pages=221-233&rft.issn=0169-2070&rft.eissn=1872-8200&rft.coden=IJFOEK&rft_id=info:doi/10.1016/j.ijforecast.2012.09.004&rft_dat=%3Cproquest_cross%3E2904830961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313533780&rft_id=info:pmid/&rft_els_id=S0169207012001197&rfr_iscdi=true