Sampling decomposable graphs using a Markov chain on junction trees

Full Bayesian computational inference for model determination in undirected graphical models is currently restricted to decomposable graphs or other special cases, except for small-scale problems, say up to 15 variables. In this paper we develop new, more efficient methodology for such inference, by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2013-03, Vol.100 (1), p.91-110
Hauptverfasser: GREEN, PETER J., THOMAS, ALUN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 91
container_title Biometrika
container_volume 100
creator GREEN, PETER J.
THOMAS, ALUN
description Full Bayesian computational inference for model determination in undirected graphical models is currently restricted to decomposable graphs or other special cases, except for small-scale problems, say up to 15 variables. In this paper we develop new, more efficient methodology for such inference, by making two contributions to the computational geometry of decomposable graphs. The first of these provides sufficient conditions under which it is possible to completely connect two disconnected complete subsets of vertices, or perform the reverse procedure, yet maintain decomposability of the graph. The second is a new Markov chain Monte Carlo sampler for arbitrary positive distributions on decomposable graphs, taking a junction tree representing the graph as its state variable. The resulting methodology is illustrated with numerical experiments on three models.
doi_str_mv 10.1093/biomet/ass052
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1312775287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43304539</jstor_id><sourcerecordid>43304539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-326d21fcd9cb20caeb8132889a481b423965b7b8126555adbb60e51c0c76df23</originalsourceid><addsrcrecordid>eNo9kEtLxDAQgIMouK4ePQoBz3XzbnuUoquw4sG9hyRNd1u3Tc20gv_eloqXeX7MwIfQLSUPlOR8Y-vQ-mFjAIhkZ2hFhRIJl5ScoxUhRCVcCHGJrgCauVVSrVDxYdr-VHcHXHoX2j6AsSePD9H0R8AjzBuD30z8DN_YHU3d4dDhZuzcUE_FEL2Ha3RRmRP4m7-8Rvvnp33xkuzet6_F4y5xnKkhmULJaOXK3FlGnPE2o5xlWW5ERq1gPFfSptOQKSmlKa1VxEvqiEtVWTG-RvfL2T6Gr9HDoJswxm76qCmnLE0ly9KJShbKxQAQfaX7WLcm_mhK9KxJL5r0omni7xa-gSHEf1hwToTkOf8F68RmWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312775287</pqid></control><display><type>article</type><title>Sampling decomposable graphs using a Markov chain on junction trees</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>GREEN, PETER J. ; THOMAS, ALUN</creator><creatorcontrib>GREEN, PETER J. ; THOMAS, ALUN</creatorcontrib><description>Full Bayesian computational inference for model determination in undirected graphical models is currently restricted to decomposable graphs or other special cases, except for small-scale problems, say up to 15 variables. In this paper we develop new, more efficient methodology for such inference, by making two contributions to the computational geometry of decomposable graphs. The first of these provides sufficient conditions under which it is possible to completely connect two disconnected complete subsets of vertices, or perform the reverse procedure, yet maintain decomposability of the graph. The second is a new Markov chain Monte Carlo sampler for arbitrary positive distributions on decomposable graphs, taking a junction tree representing the graph as its state variable. The resulting methodology is illustrated with numerical experiments on three models.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/ass052</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Biometrika Trust, University College London</publisher><subject>Bayesian analysis ; Geometry ; Graph theory ; Graphs ; Markov analysis ; Monte Carlo simulation ; Studies</subject><ispartof>Biometrika, 2013-03, Vol.100 (1), p.91-110</ispartof><rights>2013 Biometrika Trust</rights><rights>Copyright Oxford Publishing Limited(England) Mar 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-326d21fcd9cb20caeb8132889a481b423965b7b8126555adbb60e51c0c76df23</citedby><cites>FETCH-LOGICAL-c326t-326d21fcd9cb20caeb8132889a481b423965b7b8126555adbb60e51c0c76df23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43304539$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43304539$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>GREEN, PETER J.</creatorcontrib><creatorcontrib>THOMAS, ALUN</creatorcontrib><title>Sampling decomposable graphs using a Markov chain on junction trees</title><title>Biometrika</title><description>Full Bayesian computational inference for model determination in undirected graphical models is currently restricted to decomposable graphs or other special cases, except for small-scale problems, say up to 15 variables. In this paper we develop new, more efficient methodology for such inference, by making two contributions to the computational geometry of decomposable graphs. The first of these provides sufficient conditions under which it is possible to completely connect two disconnected complete subsets of vertices, or perform the reverse procedure, yet maintain decomposability of the graph. The second is a new Markov chain Monte Carlo sampler for arbitrary positive distributions on decomposable graphs, taking a junction tree representing the graph as its state variable. The resulting methodology is illustrated with numerical experiments on three models.</description><subject>Bayesian analysis</subject><subject>Geometry</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Markov analysis</subject><subject>Monte Carlo simulation</subject><subject>Studies</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAQgIMouK4ePQoBz3XzbnuUoquw4sG9hyRNd1u3Tc20gv_eloqXeX7MwIfQLSUPlOR8Y-vQ-mFjAIhkZ2hFhRIJl5ScoxUhRCVcCHGJrgCauVVSrVDxYdr-VHcHXHoX2j6AsSePD9H0R8AjzBuD30z8DN_YHU3d4dDhZuzcUE_FEL2Ha3RRmRP4m7-8Rvvnp33xkuzet6_F4y5xnKkhmULJaOXK3FlGnPE2o5xlWW5ERq1gPFfSptOQKSmlKa1VxEvqiEtVWTG-RvfL2T6Gr9HDoJswxm76qCmnLE0ly9KJShbKxQAQfaX7WLcm_mhK9KxJL5r0omni7xa-gSHEf1hwToTkOf8F68RmWg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>GREEN, PETER J.</creator><creator>THOMAS, ALUN</creator><general>Biometrika Trust, University College London</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130301</creationdate><title>Sampling decomposable graphs using a Markov chain on junction trees</title><author>GREEN, PETER J. ; THOMAS, ALUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-326d21fcd9cb20caeb8132889a481b423965b7b8126555adbb60e51c0c76df23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayesian analysis</topic><topic>Geometry</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Markov analysis</topic><topic>Monte Carlo simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GREEN, PETER J.</creatorcontrib><creatorcontrib>THOMAS, ALUN</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GREEN, PETER J.</au><au>THOMAS, ALUN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling decomposable graphs using a Markov chain on junction trees</atitle><jtitle>Biometrika</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>100</volume><issue>1</issue><spage>91</spage><epage>110</epage><pages>91-110</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>Full Bayesian computational inference for model determination in undirected graphical models is currently restricted to decomposable graphs or other special cases, except for small-scale problems, say up to 15 variables. In this paper we develop new, more efficient methodology for such inference, by making two contributions to the computational geometry of decomposable graphs. The first of these provides sufficient conditions under which it is possible to completely connect two disconnected complete subsets of vertices, or perform the reverse procedure, yet maintain decomposability of the graph. The second is a new Markov chain Monte Carlo sampler for arbitrary positive distributions on decomposable graphs, taking a junction tree representing the graph as its state variable. The resulting methodology is illustrated with numerical experiments on three models.</abstract><cop>Oxford</cop><pub>Biometrika Trust, University College London</pub><doi>10.1093/biomet/ass052</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2013-03, Vol.100 (1), p.91-110
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_1312775287
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Bayesian analysis
Geometry
Graph theory
Graphs
Markov analysis
Monte Carlo simulation
Studies
title Sampling decomposable graphs using a Markov chain on junction trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20decomposable%20graphs%20using%20a%20Markov%20chain%20on%20junction%20trees&rft.jtitle=Biometrika&rft.au=GREEN,%20PETER%20J.&rft.date=2013-03-01&rft.volume=100&rft.issue=1&rft.spage=91&rft.epage=110&rft.pages=91-110&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/ass052&rft_dat=%3Cjstor_proqu%3E43304539%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312775287&rft_id=info:pmid/&rft_jstor_id=43304539&rfr_iscdi=true