Large Scale Superconducting Wind Turbine Cooling
General Electric proposes to apply transformational technology in the form of low-temperature superconductivity to the design of direct-drive wind turbine generators of the 10-MW power level and greater. Generally, optimal steady state 4 K cryogenic cooling of a large thermal mass (> 10 000 kg) a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.5200804-5200804 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5200804 |
---|---|
container_issue | 3 |
container_start_page | 5200804 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 23 |
creator | Stautner, W. Fair, R. Sivasubramaniam, K. Amm, K. Bray, J. Laskaris, E. T. Weeber, K. Douglass, M. Fulton, L. Hou, S. Kim, J. Longtin, R. Moscinski, M. Rochford, J. Rajput-Ghoshal, R. Riley, P. Wagner, D. Duckworth, R. |
description | General Electric proposes to apply transformational technology in the form of low-temperature superconductivity to the design of direct-drive wind turbine generators of the 10-MW power level and greater. Generally, optimal steady state 4 K cryogenic cooling of a large thermal mass (> 10 000 kg) and its dimensions (> 4 m diameter and 2.5 m length) with minimum levelized cost of energy is difficult to achieve. A cooling strategy has been found that turns this size disadvantage to ones favor, and furthermore enables the design scalability of the field winding cooling assembly towards 15 to 20 MW. In this design study, we show that size and efficiency are not mutually exclusive and that it is indeed possible to minimize cryogenic complexity and reduce cost. The cryogenic push-button closed loop circulating system is invisible within the nacelle of a wind turbine and requires no handling of cryogenic liquids. Besides the occasional cryocooler service requirement, the proposed solution is maintenance-free in all operating states and allows the system health to be monitored remotely. The design solutions proposed could potentially make large superconducting generators a reality for off-shore wind turbine deployment. |
doi_str_mv | 10.1109/TASC.2012.2231138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1312402161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6365243</ieee_id><sourcerecordid>2901364061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6ebebc2b45daa41d8ad4848e5519dba0f9c1aafa96905f77efbce8ba05e997c73</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOKd_gHgpiOClMy8_2uY4yvwBAw-beAxp-jo6unQm68H_3pSNHbwkId_Pe3n5EHIPdAZA1ct6vipnjAKbMcYBeHFBJiBlkTIJ8jKeqYS0iNk1uQlhSymIQsgJoUvjN5isrOniOuzR297Vgz20bpN8t65O1oOvWodJ2fddvLwlV43pAt6d9in5el2sy_d0-fn2Uc6XqeUyO6QZVlhZVglZGyOgLkwdHyxQSlB1ZWijLBjTGJUpKps8x6ayWMRAolK5zfmUPB_77n3_M2A46F0bLHadcdgPQQMXSnDOGUT08R-67Qfv4nSRAiYog2yk4EhZ34fgsdF73-6M_9VA9ehQjw716FCfHMaap1NnE6Khxhtn23AuZLlkKv4ocg9HrkXEc5zxTLI44x9mPHkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312402161</pqid></control><display><type>article</type><title>Large Scale Superconducting Wind Turbine Cooling</title><source>IEEE Electronic Library (IEL)</source><creator>Stautner, W. ; Fair, R. ; Sivasubramaniam, K. ; Amm, K. ; Bray, J. ; Laskaris, E. T. ; Weeber, K. ; Douglass, M. ; Fulton, L. ; Hou, S. ; Kim, J. ; Longtin, R. ; Moscinski, M. ; Rochford, J. ; Rajput-Ghoshal, R. ; Riley, P. ; Wagner, D. ; Duckworth, R.</creator><creatorcontrib>Stautner, W. ; Fair, R. ; Sivasubramaniam, K. ; Amm, K. ; Bray, J. ; Laskaris, E. T. ; Weeber, K. ; Douglass, M. ; Fulton, L. ; Hou, S. ; Kim, J. ; Longtin, R. ; Moscinski, M. ; Rochford, J. ; Rajput-Ghoshal, R. ; Riley, P. ; Wagner, D. ; Duckworth, R.</creatorcontrib><description>General Electric proposes to apply transformational technology in the form of low-temperature superconductivity to the design of direct-drive wind turbine generators of the 10-MW power level and greater. Generally, optimal steady state 4 K cryogenic cooling of a large thermal mass (> 10 000 kg) and its dimensions (> 4 m diameter and 2.5 m length) with minimum levelized cost of energy is difficult to achieve. A cooling strategy has been found that turns this size disadvantage to ones favor, and furthermore enables the design scalability of the field winding cooling assembly towards 15 to 20 MW. In this design study, we show that size and efficiency are not mutually exclusive and that it is indeed possible to minimize cryogenic complexity and reduce cost. The cryogenic push-button closed loop circulating system is invisible within the nacelle of a wind turbine and requires no handling of cryogenic liquids. Besides the occasional cryocooler service requirement, the proposed solution is maintenance-free in all operating states and allows the system health to be monitored remotely. The design solutions proposed could potentially make large superconducting generators a reality for off-shore wind turbine deployment.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2231138</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coils ; Cooling ; Cost engineering ; Cryogenics ; Design engineering ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical machines ; Electrical power engineering ; Electromagnets ; Errors ; Exact sciences and technology ; Generators ; Helium ; Low temperature superconductor ; Magnetic resonance imaging ; Miscellaneous ; Power plants ; Special rotating machines ; stationary field winding ; superconducting generator ; Superconductivity ; Syntax ; thermosiphon cooled magnet ; Various equipment and components ; Wind turbines ; Windings</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.5200804-5200804</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6ebebc2b45daa41d8ad4848e5519dba0f9c1aafa96905f77efbce8ba05e997c73</citedby><cites>FETCH-LOGICAL-c356t-6ebebc2b45daa41d8ad4848e5519dba0f9c1aafa96905f77efbce8ba05e997c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6365243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6365243$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27529551$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stautner, W.</creatorcontrib><creatorcontrib>Fair, R.</creatorcontrib><creatorcontrib>Sivasubramaniam, K.</creatorcontrib><creatorcontrib>Amm, K.</creatorcontrib><creatorcontrib>Bray, J.</creatorcontrib><creatorcontrib>Laskaris, E. T.</creatorcontrib><creatorcontrib>Weeber, K.</creatorcontrib><creatorcontrib>Douglass, M.</creatorcontrib><creatorcontrib>Fulton, L.</creatorcontrib><creatorcontrib>Hou, S.</creatorcontrib><creatorcontrib>Kim, J.</creatorcontrib><creatorcontrib>Longtin, R.</creatorcontrib><creatorcontrib>Moscinski, M.</creatorcontrib><creatorcontrib>Rochford, J.</creatorcontrib><creatorcontrib>Rajput-Ghoshal, R.</creatorcontrib><creatorcontrib>Riley, P.</creatorcontrib><creatorcontrib>Wagner, D.</creatorcontrib><creatorcontrib>Duckworth, R.</creatorcontrib><title>Large Scale Superconducting Wind Turbine Cooling</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>General Electric proposes to apply transformational technology in the form of low-temperature superconductivity to the design of direct-drive wind turbine generators of the 10-MW power level and greater. Generally, optimal steady state 4 K cryogenic cooling of a large thermal mass (> 10 000 kg) and its dimensions (> 4 m diameter and 2.5 m length) with minimum levelized cost of energy is difficult to achieve. A cooling strategy has been found that turns this size disadvantage to ones favor, and furthermore enables the design scalability of the field winding cooling assembly towards 15 to 20 MW. In this design study, we show that size and efficiency are not mutually exclusive and that it is indeed possible to minimize cryogenic complexity and reduce cost. The cryogenic push-button closed loop circulating system is invisible within the nacelle of a wind turbine and requires no handling of cryogenic liquids. Besides the occasional cryocooler service requirement, the proposed solution is maintenance-free in all operating states and allows the system health to be monitored remotely. The design solutions proposed could potentially make large superconducting generators a reality for off-shore wind turbine deployment.</description><subject>Applied sciences</subject><subject>Coils</subject><subject>Cooling</subject><subject>Cost engineering</subject><subject>Cryogenics</subject><subject>Design engineering</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Electrical power engineering</subject><subject>Electromagnets</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Generators</subject><subject>Helium</subject><subject>Low temperature superconductor</subject><subject>Magnetic resonance imaging</subject><subject>Miscellaneous</subject><subject>Power plants</subject><subject>Special rotating machines</subject><subject>stationary field winding</subject><subject>superconducting generator</subject><subject>Superconductivity</subject><subject>Syntax</subject><subject>thermosiphon cooled magnet</subject><subject>Various equipment and components</subject><subject>Wind turbines</subject><subject>Windings</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4MoOKd_gHgpiOClMy8_2uY4yvwBAw-beAxp-jo6unQm68H_3pSNHbwkId_Pe3n5EHIPdAZA1ct6vipnjAKbMcYBeHFBJiBlkTIJ8jKeqYS0iNk1uQlhSymIQsgJoUvjN5isrOniOuzR297Vgz20bpN8t65O1oOvWodJ2fddvLwlV43pAt6d9in5el2sy_d0-fn2Uc6XqeUyO6QZVlhZVglZGyOgLkwdHyxQSlB1ZWijLBjTGJUpKps8x6ayWMRAolK5zfmUPB_77n3_M2A46F0bLHadcdgPQQMXSnDOGUT08R-67Qfv4nSRAiYog2yk4EhZ34fgsdF73-6M_9VA9ehQjw716FCfHMaap1NnE6Khxhtn23AuZLlkKv4ocg9HrkXEc5zxTLI44x9mPHkM</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Stautner, W.</creator><creator>Fair, R.</creator><creator>Sivasubramaniam, K.</creator><creator>Amm, K.</creator><creator>Bray, J.</creator><creator>Laskaris, E. T.</creator><creator>Weeber, K.</creator><creator>Douglass, M.</creator><creator>Fulton, L.</creator><creator>Hou, S.</creator><creator>Kim, J.</creator><creator>Longtin, R.</creator><creator>Moscinski, M.</creator><creator>Rochford, J.</creator><creator>Rajput-Ghoshal, R.</creator><creator>Riley, P.</creator><creator>Wagner, D.</creator><creator>Duckworth, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20130601</creationdate><title>Large Scale Superconducting Wind Turbine Cooling</title><author>Stautner, W. ; Fair, R. ; Sivasubramaniam, K. ; Amm, K. ; Bray, J. ; Laskaris, E. T. ; Weeber, K. ; Douglass, M. ; Fulton, L. ; Hou, S. ; Kim, J. ; Longtin, R. ; Moscinski, M. ; Rochford, J. ; Rajput-Ghoshal, R. ; Riley, P. ; Wagner, D. ; Duckworth, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6ebebc2b45daa41d8ad4848e5519dba0f9c1aafa96905f77efbce8ba05e997c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Coils</topic><topic>Cooling</topic><topic>Cost engineering</topic><topic>Cryogenics</topic><topic>Design engineering</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Electrical power engineering</topic><topic>Electromagnets</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Generators</topic><topic>Helium</topic><topic>Low temperature superconductor</topic><topic>Magnetic resonance imaging</topic><topic>Miscellaneous</topic><topic>Power plants</topic><topic>Special rotating machines</topic><topic>stationary field winding</topic><topic>superconducting generator</topic><topic>Superconductivity</topic><topic>Syntax</topic><topic>thermosiphon cooled magnet</topic><topic>Various equipment and components</topic><topic>Wind turbines</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stautner, W.</creatorcontrib><creatorcontrib>Fair, R.</creatorcontrib><creatorcontrib>Sivasubramaniam, K.</creatorcontrib><creatorcontrib>Amm, K.</creatorcontrib><creatorcontrib>Bray, J.</creatorcontrib><creatorcontrib>Laskaris, E. T.</creatorcontrib><creatorcontrib>Weeber, K.</creatorcontrib><creatorcontrib>Douglass, M.</creatorcontrib><creatorcontrib>Fulton, L.</creatorcontrib><creatorcontrib>Hou, S.</creatorcontrib><creatorcontrib>Kim, J.</creatorcontrib><creatorcontrib>Longtin, R.</creatorcontrib><creatorcontrib>Moscinski, M.</creatorcontrib><creatorcontrib>Rochford, J.</creatorcontrib><creatorcontrib>Rajput-Ghoshal, R.</creatorcontrib><creatorcontrib>Riley, P.</creatorcontrib><creatorcontrib>Wagner, D.</creatorcontrib><creatorcontrib>Duckworth, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stautner, W.</au><au>Fair, R.</au><au>Sivasubramaniam, K.</au><au>Amm, K.</au><au>Bray, J.</au><au>Laskaris, E. T.</au><au>Weeber, K.</au><au>Douglass, M.</au><au>Fulton, L.</au><au>Hou, S.</au><au>Kim, J.</au><au>Longtin, R.</au><au>Moscinski, M.</au><au>Rochford, J.</au><au>Rajput-Ghoshal, R.</au><au>Riley, P.</au><au>Wagner, D.</au><au>Duckworth, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Scale Superconducting Wind Turbine Cooling</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>5200804</spage><epage>5200804</epage><pages>5200804-5200804</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>General Electric proposes to apply transformational technology in the form of low-temperature superconductivity to the design of direct-drive wind turbine generators of the 10-MW power level and greater. Generally, optimal steady state 4 K cryogenic cooling of a large thermal mass (> 10 000 kg) and its dimensions (> 4 m diameter and 2.5 m length) with minimum levelized cost of energy is difficult to achieve. A cooling strategy has been found that turns this size disadvantage to ones favor, and furthermore enables the design scalability of the field winding cooling assembly towards 15 to 20 MW. In this design study, we show that size and efficiency are not mutually exclusive and that it is indeed possible to minimize cryogenic complexity and reduce cost. The cryogenic push-button closed loop circulating system is invisible within the nacelle of a wind turbine and requires no handling of cryogenic liquids. Besides the occasional cryocooler service requirement, the proposed solution is maintenance-free in all operating states and allows the system health to be monitored remotely. The design solutions proposed could potentially make large superconducting generators a reality for off-shore wind turbine deployment.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2012.2231138</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.5200804-5200804 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_1312402161 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Coils Cooling Cost engineering Cryogenics Design engineering Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical machines Electrical power engineering Electromagnets Errors Exact sciences and technology Generators Helium Low temperature superconductor Magnetic resonance imaging Miscellaneous Power plants Special rotating machines stationary field winding superconducting generator Superconductivity Syntax thermosiphon cooled magnet Various equipment and components Wind turbines Windings |
title | Large Scale Superconducting Wind Turbine Cooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Scale%20Superconducting%20Wind%20Turbine%20Cooling&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Stautner,%20W.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=5200804&rft.epage=5200804&rft.pages=5200804-5200804&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2012.2231138&rft_dat=%3Cproquest_RIE%3E2901364061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312402161&rft_id=info:pmid/&rft_ieee_id=6365243&rfr_iscdi=true |