On Strictly Perfect Sets
It is shown that for a bimatrix game the set of extreme equilibria is a strictly perfect set and that every minimal strictly perfect set is finite. Moreover, it is proved that there are finitely many equivalence classes of minimal strictly perfect sets, each of which can be associated with a collect...
Gespeichert in:
Veröffentlicht in: | Games and economic behavior 1994-05, Vol.6 (3), p.400-415 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | 3 |
container_start_page | 400 |
container_title | Games and economic behavior |
container_volume | 6 |
creator | Jansen, M.J.M. Jurg, A.P. Borm, P.E.M. |
description | It is shown that for a bimatrix game the set of extreme equilibria is a strictly perfect set and that every minimal strictly perfect set is finite. Moreover, it is proved that there are finitely many equivalence classes of minimal strictly perfect sets, each of which can be associated with a collection of faces of maximal Nash subsets for the game. Further, it is shown that the set of strictly perfect equilibria, if non-empty, is the finite union of faces of maximal Nash subsets.
Journal of Economic Literature Classification Number: C72 |
doi_str_mv | 10.1006/game.1994.1023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1312000742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899825684710232</els_id><sourcerecordid>1312000742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-ff62c524e659b9a201e8015fed8bef5c779c9c7bcae69a2aeac457324e3e8cc03</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKtX8VjwvHXytbs5SvELChWq55CdzuqWtrsmaaH_vVlXvHn4EULee5k3jF1zmHKA_O7DbWnKjVHpKuQJG3EwkAlVyFM2gtKYrBQ6P2cXIawBQIsCRuxmsZsso28wbo6TV_I1YZwsKYZLdla7TaCr33PM3h8f3mbP2Xzx9DK7n2eolIhZXecCtVCUa1MZJ4BTCVzXtCorqjUWhUGDRYWO8vTsyKHShUwGSSUiyDG7HXI7337tKUS7bvd-l760XHKRBi2USKrpoELfhuCptp1vts4fLQfbt7d9e9u3t337ZHgZDJ46wj81EfXCiuzBSpcnjokfm3RNQia6hAKwimv7GbcpqxyyKO3h0JC3ARvaIa0an9ZlV23z3xjfaJx3rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312000742</pqid></control><display><type>article</type><title>On Strictly Perfect Sets</title><source>RePEc</source><source>Periodicals Index Online</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jansen, M.J.M. ; Jurg, A.P. ; Borm, P.E.M.</creator><creatorcontrib>Jansen, M.J.M. ; Jurg, A.P. ; Borm, P.E.M.</creatorcontrib><description>It is shown that for a bimatrix game the set of extreme equilibria is a strictly perfect set and that every minimal strictly perfect set is finite. Moreover, it is proved that there are finitely many equivalence classes of minimal strictly perfect sets, each of which can be associated with a collection of faces of maximal Nash subsets for the game. Further, it is shown that the set of strictly perfect equilibria, if non-empty, is the finite union of faces of maximal Nash subsets.
Journal of Economic Literature Classification Number: C72</description><identifier>ISSN: 0899-8256</identifier><identifier>EISSN: 1090-2473</identifier><identifier>DOI: 10.1006/game.1994.1023</identifier><language>eng</language><publisher>Duluth, MN: Elsevier Inc</publisher><ispartof>Games and economic behavior, 1994-05, Vol.6 (3), p.400-415</ispartof><rights>1994 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-ff62c524e659b9a201e8015fed8bef5c779c9c7bcae69a2aeac457324e3e8cc03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/game.1994.1023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,27850,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeegamebe/v_3a6_3ay_3a1994_3ai_3a3_3ap_3a400-415.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Jansen, M.J.M.</creatorcontrib><creatorcontrib>Jurg, A.P.</creatorcontrib><creatorcontrib>Borm, P.E.M.</creatorcontrib><title>On Strictly Perfect Sets</title><title>Games and economic behavior</title><description>It is shown that for a bimatrix game the set of extreme equilibria is a strictly perfect set and that every minimal strictly perfect set is finite. Moreover, it is proved that there are finitely many equivalence classes of minimal strictly perfect sets, each of which can be associated with a collection of faces of maximal Nash subsets for the game. Further, it is shown that the set of strictly perfect equilibria, if non-empty, is the finite union of faces of maximal Nash subsets.
Journal of Economic Literature Classification Number: C72</description><issn>0899-8256</issn><issn>1090-2473</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>K30</sourceid><recordid>eNp1kM1LAzEQxYMoWKtX8VjwvHXytbs5SvELChWq55CdzuqWtrsmaaH_vVlXvHn4EULee5k3jF1zmHKA_O7DbWnKjVHpKuQJG3EwkAlVyFM2gtKYrBQ6P2cXIawBQIsCRuxmsZsso28wbo6TV_I1YZwsKYZLdla7TaCr33PM3h8f3mbP2Xzx9DK7n2eolIhZXecCtVCUa1MZJ4BTCVzXtCorqjUWhUGDRYWO8vTsyKHShUwGSSUiyDG7HXI7337tKUS7bvd-l760XHKRBi2USKrpoELfhuCptp1vts4fLQfbt7d9e9u3t337ZHgZDJ46wj81EfXCiuzBSpcnjokfm3RNQia6hAKwimv7GbcpqxyyKO3h0JC3ARvaIa0an9ZlV23z3xjfaJx3rw</recordid><startdate>19940501</startdate><enddate>19940501</enddate><creator>Jansen, M.J.M.</creator><creator>Jurg, A.P.</creator><creator>Borm, P.E.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Academic Press</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19940501</creationdate><title>On Strictly Perfect Sets</title><author>Jansen, M.J.M. ; Jurg, A.P. ; Borm, P.E.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-ff62c524e659b9a201e8015fed8bef5c779c9c7bcae69a2aeac457324e3e8cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jansen, M.J.M.</creatorcontrib><creatorcontrib>Jurg, A.P.</creatorcontrib><creatorcontrib>Borm, P.E.M.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Games and economic behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jansen, M.J.M.</au><au>Jurg, A.P.</au><au>Borm, P.E.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Strictly Perfect Sets</atitle><jtitle>Games and economic behavior</jtitle><date>1994-05-01</date><risdate>1994</risdate><volume>6</volume><issue>3</issue><spage>400</spage><epage>415</epage><pages>400-415</pages><issn>0899-8256</issn><eissn>1090-2473</eissn><abstract>It is shown that for a bimatrix game the set of extreme equilibria is a strictly perfect set and that every minimal strictly perfect set is finite. Moreover, it is proved that there are finitely many equivalence classes of minimal strictly perfect sets, each of which can be associated with a collection of faces of maximal Nash subsets for the game. Further, it is shown that the set of strictly perfect equilibria, if non-empty, is the finite union of faces of maximal Nash subsets.
Journal of Economic Literature Classification Number: C72</abstract><cop>Duluth, MN</cop><pub>Elsevier Inc</pub><doi>10.1006/game.1994.1023</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8256 |
ispartof | Games and economic behavior, 1994-05, Vol.6 (3), p.400-415 |
issn | 0899-8256 1090-2473 |
language | eng |
recordid | cdi_proquest_journals_1312000742 |
source | RePEc; Periodicals Index Online; ScienceDirect Journals (5 years ago - present) |
title | On Strictly Perfect Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Strictly%20Perfect%20Sets&rft.jtitle=Games%20and%20economic%20behavior&rft.au=Jansen,%20M.J.M.&rft.date=1994-05-01&rft.volume=6&rft.issue=3&rft.spage=400&rft.epage=415&rft.pages=400-415&rft.issn=0899-8256&rft.eissn=1090-2473&rft_id=info:doi/10.1006/game.1994.1023&rft_dat=%3Cproquest_cross%3E1312000742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312000742&rft_id=info:pmid/&rft_els_id=S0899825684710232&rfr_iscdi=true |