A Simple Noncalculus Proof That the Median Minimizes the Sum of the Absolute Deviations

A simple noncalculus proof that the median minimizes the sum of the absolute deviations is presented. It is based on sets and is appropriate for continuous or discrete populations.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American statistician 1990-02, Vol.44 (1), p.38-39
Hauptverfasser: Schwertman, Neil C., Gilks, A. J., Cameron, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 38
container_title The American statistician
container_volume 44
creator Schwertman, Neil C.
Gilks, A. J.
Cameron, J.
description A simple noncalculus proof that the median minimizes the sum of the absolute deviations is presented. It is based on sets and is appropriate for continuous or discrete populations.
doi_str_mv 10.1080/00031305.1990.10475690
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1311446025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2684955</jstor_id><sourcerecordid>2684955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-b299ff770f8da6ef7125dea650c175c26d4c5819917858d8c2b711ab6ef51d733</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BQnqtpqbNEm7HHyDL1BxGTJpghnaZkxaRX-9raPgRlzdB9-5h3sQ2gVyCKQgR4QQBozwQyjLcZVLLkqyhibAmcyoZLCOJiOUjdQm2kppMYxECjpBTzN875tlbfFNaI2uTV_3Cd_FEBx-eNYd7p4tvraV1y2-9q1v_IdNX8v7vsEDNLazeQp131l8Yl-97nxo0zbacLpOdue7TtHj2enD8UV2dXt-eTy7ygwD0mVzWpbOSUlcUWlhnQTKK6sFJwYkN1RUueHF8BjIghdVYehcAuj5gHKoJGNTtLe6u4zhpbepU4vQx3awVJQWHCgIOUD7f0HAAPJcEMoHSqwoE0NK0Tq1jL7R8V0BUWPS6idpNSatfpIehAcr4SJ1If5WUUakoqLISz7en60w37oQG_0WYl2pTr_XIbqoW-OTYv9YfQLZMY5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311446025</pqid></control><display><type>article</type><title>A Simple Noncalculus Proof That the Median Minimizes the Sum of the Absolute Deviations</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Schwertman, Neil C. ; Gilks, A. J. ; Cameron, J.</creator><creatorcontrib>Schwertman, Neil C. ; Gilks, A. J. ; Cameron, J.</creatorcontrib><description>A simple noncalculus proof that the median minimizes the sum of the absolute deviations is presented. It is based on sets and is appropriate for continuous or discrete populations.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.1990.10475690</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Washington: Taylor &amp; Francis Group</publisher><subject>Calculus ; Estimators ; Logical proofs ; Mathematical differentiation ; Mathematical intervals ; Proof calculi ; Statistical deviations ; Statistical median ; Statistics ; Teacher's Corner ; Unbiased estimators</subject><ispartof>The American statistician, 1990-02, Vol.44 (1), p.38-39</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1990</rights><rights>Copyright 1990 American Statistical Association</rights><rights>Copyright American Statistical Association Feb 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-b299ff770f8da6ef7125dea650c175c26d4c5819917858d8c2b711ab6ef51d733</citedby><cites>FETCH-LOGICAL-c310t-b299ff770f8da6ef7125dea650c175c26d4c5819917858d8c2b711ab6ef51d733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2684955$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2684955$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Schwertman, Neil C.</creatorcontrib><creatorcontrib>Gilks, A. J.</creatorcontrib><creatorcontrib>Cameron, J.</creatorcontrib><title>A Simple Noncalculus Proof That the Median Minimizes the Sum of the Absolute Deviations</title><title>The American statistician</title><description>A simple noncalculus proof that the median minimizes the sum of the absolute deviations is presented. It is based on sets and is appropriate for continuous or discrete populations.</description><subject>Calculus</subject><subject>Estimators</subject><subject>Logical proofs</subject><subject>Mathematical differentiation</subject><subject>Mathematical intervals</subject><subject>Proof calculi</subject><subject>Statistical deviations</subject><subject>Statistical median</subject><subject>Statistics</subject><subject>Teacher's Corner</subject><subject>Unbiased estimators</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkEtLxDAUhYMoOI7-BQnqtpqbNEm7HHyDL1BxGTJpghnaZkxaRX-9raPgRlzdB9-5h3sQ2gVyCKQgR4QQBozwQyjLcZVLLkqyhibAmcyoZLCOJiOUjdQm2kppMYxECjpBTzN875tlbfFNaI2uTV_3Cd_FEBx-eNYd7p4tvraV1y2-9q1v_IdNX8v7vsEDNLazeQp131l8Yl-97nxo0zbacLpOdue7TtHj2enD8UV2dXt-eTy7ygwD0mVzWpbOSUlcUWlhnQTKK6sFJwYkN1RUueHF8BjIghdVYehcAuj5gHKoJGNTtLe6u4zhpbepU4vQx3awVJQWHCgIOUD7f0HAAPJcEMoHSqwoE0NK0Tq1jL7R8V0BUWPS6idpNSatfpIehAcr4SJ1If5WUUakoqLISz7en60w37oQG_0WYl2pTr_XIbqoW-OTYv9YfQLZMY5g</recordid><startdate>19900201</startdate><enddate>19900201</enddate><creator>Schwertman, Neil C.</creator><creator>Gilks, A. J.</creator><creator>Cameron, J.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JTYFY</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19900201</creationdate><title>A Simple Noncalculus Proof That the Median Minimizes the Sum of the Absolute Deviations</title><author>Schwertman, Neil C. ; Gilks, A. J. ; Cameron, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-b299ff770f8da6ef7125dea650c175c26d4c5819917858d8c2b711ab6ef51d733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Calculus</topic><topic>Estimators</topic><topic>Logical proofs</topic><topic>Mathematical differentiation</topic><topic>Mathematical intervals</topic><topic>Proof calculi</topic><topic>Statistical deviations</topic><topic>Statistical median</topic><topic>Statistics</topic><topic>Teacher's Corner</topic><topic>Unbiased estimators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwertman, Neil C.</creatorcontrib><creatorcontrib>Gilks, A. J.</creatorcontrib><creatorcontrib>Cameron, J.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 37</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwertman, Neil C.</au><au>Gilks, A. J.</au><au>Cameron, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Noncalculus Proof That the Median Minimizes the Sum of the Absolute Deviations</atitle><jtitle>The American statistician</jtitle><date>1990-02-01</date><risdate>1990</risdate><volume>44</volume><issue>1</issue><spage>38</spage><epage>39</epage><pages>38-39</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>A simple noncalculus proof that the median minimizes the sum of the absolute deviations is presented. It is based on sets and is appropriate for continuous or discrete populations.</abstract><cop>Washington</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00031305.1990.10475690</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 1990-02, Vol.44 (1), p.38-39
issn 0003-1305
1537-2731
language eng
recordid cdi_proquest_journals_1311446025
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects Calculus
Estimators
Logical proofs
Mathematical differentiation
Mathematical intervals
Proof calculi
Statistical deviations
Statistical median
Statistics
Teacher's Corner
Unbiased estimators
title A Simple Noncalculus Proof That the Median Minimizes the Sum of the Absolute Deviations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Noncalculus%20Proof%20That%20the%20Median%20Minimizes%20the%20Sum%20of%20the%20Absolute%20Deviations&rft.jtitle=The%20American%20statistician&rft.au=Schwertman,%20Neil%20C.&rft.date=1990-02-01&rft.volume=44&rft.issue=1&rft.spage=38&rft.epage=39&rft.pages=38-39&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1080/00031305.1990.10475690&rft_dat=%3Cjstor_proqu%3E2684955%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311446025&rft_id=info:pmid/&rft_jstor_id=2684955&rfr_iscdi=true