Predicting High-Risk Cholesterol Levels

The pattern of longitudinal changes in cholesterol levels has important implications for screening policies and for understanding the role of cholesterol as a risk factor for coronary heart disease. We explored a variety of longitudinal models to predict changes in cholesterol over several years, em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International statistical review 1994-08, Vol.62 (2), p.203-228
Hauptverfasser: Garber, Alan M., Olshen, Richard A., Zhang, Heping, Venkatraman, E. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 2
container_start_page 203
container_title International statistical review
container_volume 62
creator Garber, Alan M.
Olshen, Richard A.
Zhang, Heping
Venkatraman, E. S.
description The pattern of longitudinal changes in cholesterol levels has important implications for screening policies and for understanding the role of cholesterol as a risk factor for coronary heart disease. We explored a variety of longitudinal models to predict changes in cholesterol over several years, emphasizing the probability that an individual will develop a cholesterol level that requires further diagnostic tests or treatment. The first question was whether measured cholesterol is Markovian. A chi-square statistic based on the bootstrap and motivated by the Chapman-Kolmogorov equations established that it is not. Related bootstrap-based tests indicate that the probability structure of measured cholesterol is not that of a low order autoregressive moving average (ARMA) model. We then tested several alternative models to predict future cholesterol levels from the pattern of previous measured values, using receiver-operating characteristic (ROC) curves to summarize the sensitivity and specificity of the resulting rules for predicting high risk values. One method was based on the Gaussian assumption that the logarithms of cholesterol levels are jointly Gaussian; a second was based on ordinary least squares regression; a third was based on logistic regression. We developed a bootstrap technique for finding confidence regions for points on the ROC curves. Bootstrap simulations were used in three different ways in computing the regions: one to bias correct each point on a curve, a second to find the bootstrap distribution of points for each threshold that defines a particular value of sensitivity and specificity, and a third to find the volume of the (ellipsoidal) regions. The results of our analyses suggest that the models can be used to identify subgroups of individuals who are unlikely to develop very high risk levels of cholesterol. The models also can be used to help formulate schedules for screening individuals. /// Le cours longitudinal des changements dans le niveau du cholestérol est d'importance pour les programmes de dépistage et pour comprendre le rôle du cholestérol dans la maladie coronarienne. Nous examinons une variété de modèles longitudinaux aux fins de prédire le changement du cholestérol au cours de plusieurs années; en particulier, nous voulons estimer la probabilité qu'un individu donné atteindra un niveau de cholestérol assez élevé pour exiger des tests diagnostiques additionels ou une intervention médicale. La première question est de savo
doi_str_mv 10.2307/1403509
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1311307063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1403509</jstor_id><sourcerecordid>1403509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-ba9017b93ac03cc70b0eaf9dcd3239eea734500f4d55055029d2235eb038b5fb3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMoWFfxFQoKe6pOMsm2PcqirlBQRM8hTZPd1NquSVfw7Y1s0ZMwMJePb_75CTmncMUQ8mvKAQWUByShuaCZKBgekgQQFlmeIz8mJyG0AICs4AmZP3nTOD26fp2u3HqTPbvwli43Q2fCaPzQpZX5NF04JUdWdcGcTXtGXu9uX5arrHq8f1jeVJlmnI5ZrUqgeV2i0oBa51CDUbZsdIMMS2NUTCAALG-EgDisbBhDYWrAoha2xhm52Hu3fvjYxQyyHXa-jyclRUrjg7DASM33lPZDCN5YufXuXfkvSUH-tCCnFiJ5OflU0KqzXvXahV-cx44A-R_WhnHw_9q-ATeLY80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311307063</pqid></control><display><type>article</type><title>Predicting High-Risk Cholesterol Levels</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Garber, Alan M. ; Olshen, Richard A. ; Zhang, Heping ; Venkatraman, E. S.</creator><creatorcontrib>Garber, Alan M. ; Olshen, Richard A. ; Zhang, Heping ; Venkatraman, E. S.</creatorcontrib><description>The pattern of longitudinal changes in cholesterol levels has important implications for screening policies and for understanding the role of cholesterol as a risk factor for coronary heart disease. We explored a variety of longitudinal models to predict changes in cholesterol over several years, emphasizing the probability that an individual will develop a cholesterol level that requires further diagnostic tests or treatment. The first question was whether measured cholesterol is Markovian. A chi-square statistic based on the bootstrap and motivated by the Chapman-Kolmogorov equations established that it is not. Related bootstrap-based tests indicate that the probability structure of measured cholesterol is not that of a low order autoregressive moving average (ARMA) model. We then tested several alternative models to predict future cholesterol levels from the pattern of previous measured values, using receiver-operating characteristic (ROC) curves to summarize the sensitivity and specificity of the resulting rules for predicting high risk values. One method was based on the Gaussian assumption that the logarithms of cholesterol levels are jointly Gaussian; a second was based on ordinary least squares regression; a third was based on logistic regression. We developed a bootstrap technique for finding confidence regions for points on the ROC curves. Bootstrap simulations were used in three different ways in computing the regions: one to bias correct each point on a curve, a second to find the bootstrap distribution of points for each threshold that defines a particular value of sensitivity and specificity, and a third to find the volume of the (ellipsoidal) regions. The results of our analyses suggest that the models can be used to identify subgroups of individuals who are unlikely to develop very high risk levels of cholesterol. The models also can be used to help formulate schedules for screening individuals. /// Le cours longitudinal des changements dans le niveau du cholestérol est d'importance pour les programmes de dépistage et pour comprendre le rôle du cholestérol dans la maladie coronarienne. Nous examinons une variété de modèles longitudinaux aux fins de prédire le changement du cholestérol au cours de plusieurs années; en particulier, nous voulons estimer la probabilité qu'un individu donné atteindra un niveau de cholestérol assez élevé pour exiger des tests diagnostiques additionels ou une intervention médicale. La première question est de savoir si l'évolution du cholestérol est markovienne. Un test bootstrap du chi-carré, motivé par les équations de Chapman-Kolmogoroff, a établi que non. Dans la même veine, d'autres tests bootstrap indiquent que la structure stochastique du cholestérol n'est même pas celle d'un processus autorégressif à moyenne mobile (ARMA) de bas ordre. On a ensuite testé plusieurs modèles alternatifs pour la prédiction du cours futur du cholestérol à partir de ses valeurs précédentes. On résume la sensibilité et la spécificité de toutes les règles de classement au risque élevé par une courbe charactéristique du receveur (ROC). Une première méthode suppose une distribution conjointe gaussienne des logarithmes du cholestérol; une deuxième est fondée sur la regression usuelle en moindres carrés; une troisième emploie la régression logistique. On a développé une technique bootstrap pour obtenir des régions de confiances pour la courbe ROC. Les simulations du bootstrap servent de trois façons dans le calcul des ces régions: pour la correction du biais des points de la courbe; pour estimer la distribution du seuil correspondant à chaque couple sensibilité-spécificité; pour trouver l'espérance du volume de l'ellipsoïde de confiance. Il ressort de nos analyses que nos modèles pourraient servir à identifier des grouppes d'individus qui n'ont pas de fortes chances d'atteindre un haut niveau de cholestérol; ces modèles pourraient aussi servir à formuler des programmes individualisés de dépistage.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.2307/1403509</identifier><identifier>CODEN: ISTRDP</identifier><language>eng</language><publisher>Malden, MA: International Statistical Institute</publisher><subject>Age ; Biological and medical sciences ; Cholesterols ; Computerized, statistical medical data processing and models in biomedicine ; Coronary artery disease ; Linear regression ; Logistic regression ; Medical sciences ; Men ; Modeling ; Models and simulation ; Patient assessment ; Predisposing factors ; Transition probabilities</subject><ispartof>International statistical review, 1994-08, Vol.62 (2), p.203-228</ispartof><rights>Copyright 1994 International Statistical Institute</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c241t-ba9017b93ac03cc70b0eaf9dcd3239eea734500f4d55055029d2235eb038b5fb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1403509$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1403509$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27869,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4175034$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Garber, Alan M.</creatorcontrib><creatorcontrib>Olshen, Richard A.</creatorcontrib><creatorcontrib>Zhang, Heping</creatorcontrib><creatorcontrib>Venkatraman, E. S.</creatorcontrib><title>Predicting High-Risk Cholesterol Levels</title><title>International statistical review</title><description>The pattern of longitudinal changes in cholesterol levels has important implications for screening policies and for understanding the role of cholesterol as a risk factor for coronary heart disease. We explored a variety of longitudinal models to predict changes in cholesterol over several years, emphasizing the probability that an individual will develop a cholesterol level that requires further diagnostic tests or treatment. The first question was whether measured cholesterol is Markovian. A chi-square statistic based on the bootstrap and motivated by the Chapman-Kolmogorov equations established that it is not. Related bootstrap-based tests indicate that the probability structure of measured cholesterol is not that of a low order autoregressive moving average (ARMA) model. We then tested several alternative models to predict future cholesterol levels from the pattern of previous measured values, using receiver-operating characteristic (ROC) curves to summarize the sensitivity and specificity of the resulting rules for predicting high risk values. One method was based on the Gaussian assumption that the logarithms of cholesterol levels are jointly Gaussian; a second was based on ordinary least squares regression; a third was based on logistic regression. We developed a bootstrap technique for finding confidence regions for points on the ROC curves. Bootstrap simulations were used in three different ways in computing the regions: one to bias correct each point on a curve, a second to find the bootstrap distribution of points for each threshold that defines a particular value of sensitivity and specificity, and a third to find the volume of the (ellipsoidal) regions. The results of our analyses suggest that the models can be used to identify subgroups of individuals who are unlikely to develop very high risk levels of cholesterol. The models also can be used to help formulate schedules for screening individuals. /// Le cours longitudinal des changements dans le niveau du cholestérol est d'importance pour les programmes de dépistage et pour comprendre le rôle du cholestérol dans la maladie coronarienne. Nous examinons une variété de modèles longitudinaux aux fins de prédire le changement du cholestérol au cours de plusieurs années; en particulier, nous voulons estimer la probabilité qu'un individu donné atteindra un niveau de cholestérol assez élevé pour exiger des tests diagnostiques additionels ou une intervention médicale. La première question est de savoir si l'évolution du cholestérol est markovienne. Un test bootstrap du chi-carré, motivé par les équations de Chapman-Kolmogoroff, a établi que non. Dans la même veine, d'autres tests bootstrap indiquent que la structure stochastique du cholestérol n'est même pas celle d'un processus autorégressif à moyenne mobile (ARMA) de bas ordre. On a ensuite testé plusieurs modèles alternatifs pour la prédiction du cours futur du cholestérol à partir de ses valeurs précédentes. On résume la sensibilité et la spécificité de toutes les règles de classement au risque élevé par une courbe charactéristique du receveur (ROC). Une première méthode suppose une distribution conjointe gaussienne des logarithmes du cholestérol; une deuxième est fondée sur la regression usuelle en moindres carrés; une troisième emploie la régression logistique. On a développé une technique bootstrap pour obtenir des régions de confiances pour la courbe ROC. Les simulations du bootstrap servent de trois façons dans le calcul des ces régions: pour la correction du biais des points de la courbe; pour estimer la distribution du seuil correspondant à chaque couple sensibilité-spécificité; pour trouver l'espérance du volume de l'ellipsoïde de confiance. Il ressort de nos analyses que nos modèles pourraient servir à identifier des grouppes d'individus qui n'ont pas de fortes chances d'atteindre un haut niveau de cholestérol; ces modèles pourraient aussi servir à formuler des programmes individualisés de dépistage.</description><subject>Age</subject><subject>Biological and medical sciences</subject><subject>Cholesterols</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Coronary artery disease</subject><subject>Linear regression</subject><subject>Logistic regression</subject><subject>Medical sciences</subject><subject>Men</subject><subject>Modeling</subject><subject>Models and simulation</subject><subject>Patient assessment</subject><subject>Predisposing factors</subject><subject>Transition probabilities</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kMFKxDAQhoMoWFfxFQoKe6pOMsm2PcqirlBQRM8hTZPd1NquSVfw7Y1s0ZMwMJePb_75CTmncMUQ8mvKAQWUByShuaCZKBgekgQQFlmeIz8mJyG0AICs4AmZP3nTOD26fp2u3HqTPbvwli43Q2fCaPzQpZX5NF04JUdWdcGcTXtGXu9uX5arrHq8f1jeVJlmnI5ZrUqgeV2i0oBa51CDUbZsdIMMS2NUTCAALG-EgDisbBhDYWrAoha2xhm52Hu3fvjYxQyyHXa-jyclRUrjg7DASM33lPZDCN5YufXuXfkvSUH-tCCnFiJ5OflU0KqzXvXahV-cx44A-R_WhnHw_9q-ATeLY80</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Garber, Alan M.</creator><creator>Olshen, Richard A.</creator><creator>Zhang, Heping</creator><creator>Venkatraman, E. S.</creator><general>International Statistical Institute</general><general>Blackwell</general><general>Longman</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JSICY</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19940801</creationdate><title>Predicting High-Risk Cholesterol Levels</title><author>Garber, Alan M. ; Olshen, Richard A. ; Zhang, Heping ; Venkatraman, E. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-ba9017b93ac03cc70b0eaf9dcd3239eea734500f4d55055029d2235eb038b5fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Age</topic><topic>Biological and medical sciences</topic><topic>Cholesterols</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Coronary artery disease</topic><topic>Linear regression</topic><topic>Logistic regression</topic><topic>Medical sciences</topic><topic>Men</topic><topic>Modeling</topic><topic>Models and simulation</topic><topic>Patient assessment</topic><topic>Predisposing factors</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garber, Alan M.</creatorcontrib><creatorcontrib>Olshen, Richard A.</creatorcontrib><creatorcontrib>Zhang, Heping</creatorcontrib><creatorcontrib>Venkatraman, E. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 36</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garber, Alan M.</au><au>Olshen, Richard A.</au><au>Zhang, Heping</au><au>Venkatraman, E. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting High-Risk Cholesterol Levels</atitle><jtitle>International statistical review</jtitle><date>1994-08-01</date><risdate>1994</risdate><volume>62</volume><issue>2</issue><spage>203</spage><epage>228</epage><pages>203-228</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><coden>ISTRDP</coden><abstract>The pattern of longitudinal changes in cholesterol levels has important implications for screening policies and for understanding the role of cholesterol as a risk factor for coronary heart disease. We explored a variety of longitudinal models to predict changes in cholesterol over several years, emphasizing the probability that an individual will develop a cholesterol level that requires further diagnostic tests or treatment. The first question was whether measured cholesterol is Markovian. A chi-square statistic based on the bootstrap and motivated by the Chapman-Kolmogorov equations established that it is not. Related bootstrap-based tests indicate that the probability structure of measured cholesterol is not that of a low order autoregressive moving average (ARMA) model. We then tested several alternative models to predict future cholesterol levels from the pattern of previous measured values, using receiver-operating characteristic (ROC) curves to summarize the sensitivity and specificity of the resulting rules for predicting high risk values. One method was based on the Gaussian assumption that the logarithms of cholesterol levels are jointly Gaussian; a second was based on ordinary least squares regression; a third was based on logistic regression. We developed a bootstrap technique for finding confidence regions for points on the ROC curves. Bootstrap simulations were used in three different ways in computing the regions: one to bias correct each point on a curve, a second to find the bootstrap distribution of points for each threshold that defines a particular value of sensitivity and specificity, and a third to find the volume of the (ellipsoidal) regions. The results of our analyses suggest that the models can be used to identify subgroups of individuals who are unlikely to develop very high risk levels of cholesterol. The models also can be used to help formulate schedules for screening individuals. /// Le cours longitudinal des changements dans le niveau du cholestérol est d'importance pour les programmes de dépistage et pour comprendre le rôle du cholestérol dans la maladie coronarienne. Nous examinons une variété de modèles longitudinaux aux fins de prédire le changement du cholestérol au cours de plusieurs années; en particulier, nous voulons estimer la probabilité qu'un individu donné atteindra un niveau de cholestérol assez élevé pour exiger des tests diagnostiques additionels ou une intervention médicale. La première question est de savoir si l'évolution du cholestérol est markovienne. Un test bootstrap du chi-carré, motivé par les équations de Chapman-Kolmogoroff, a établi que non. Dans la même veine, d'autres tests bootstrap indiquent que la structure stochastique du cholestérol n'est même pas celle d'un processus autorégressif à moyenne mobile (ARMA) de bas ordre. On a ensuite testé plusieurs modèles alternatifs pour la prédiction du cours futur du cholestérol à partir de ses valeurs précédentes. On résume la sensibilité et la spécificité de toutes les règles de classement au risque élevé par une courbe charactéristique du receveur (ROC). Une première méthode suppose une distribution conjointe gaussienne des logarithmes du cholestérol; une deuxième est fondée sur la regression usuelle en moindres carrés; une troisième emploie la régression logistique. On a développé une technique bootstrap pour obtenir des régions de confiances pour la courbe ROC. Les simulations du bootstrap servent de trois façons dans le calcul des ces régions: pour la correction du biais des points de la courbe; pour estimer la distribution du seuil correspondant à chaque couple sensibilité-spécificité; pour trouver l'espérance du volume de l'ellipsoïde de confiance. Il ressort de nos analyses que nos modèles pourraient servir à identifier des grouppes d'individus qui n'ont pas de fortes chances d'atteindre un haut niveau de cholestérol; ces modèles pourraient aussi servir à formuler des programmes individualisés de dépistage.</abstract><cop>Malden, MA</cop><pub>International Statistical Institute</pub><doi>10.2307/1403509</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-7734
ispartof International statistical review, 1994-08, Vol.62 (2), p.203-228
issn 0306-7734
1751-5823
language eng
recordid cdi_proquest_journals_1311307063
source Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Age
Biological and medical sciences
Cholesterols
Computerized, statistical medical data processing and models in biomedicine
Coronary artery disease
Linear regression
Logistic regression
Medical sciences
Men
Modeling
Models and simulation
Patient assessment
Predisposing factors
Transition probabilities
title Predicting High-Risk Cholesterol Levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20High-Risk%20Cholesterol%20Levels&rft.jtitle=International%20statistical%20review&rft.au=Garber,%20Alan%20M.&rft.date=1994-08-01&rft.volume=62&rft.issue=2&rft.spage=203&rft.epage=228&rft.pages=203-228&rft.issn=0306-7734&rft.eissn=1751-5823&rft.coden=ISTRDP&rft_id=info:doi/10.2307/1403509&rft_dat=%3Cjstor_proqu%3E1403509%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1311307063&rft_id=info:pmid/&rft_jstor_id=1403509&rfr_iscdi=true