Forecasting pell program applications using structural aggregate models
Demand for postsecondary financial aid offered under the Pell Grant program has proved notoriously difficult to predict in recent years. The U.S. Department of Education maintains a microsimulation model to generate forecasts of applications, but the data requirements of this model are fairly severe...
Gespeichert in:
Veröffentlicht in: | Economics of education review 1995, Vol.14 (4), p.385-394 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 394 |
---|---|
container_issue | 4 |
container_start_page | 385 |
container_title | Economics of education review |
container_volume | 14 |
creator | Cavin, Edward S. |
description | Demand for postsecondary financial aid offered under the Pell Grant program has proved notoriously difficult to predict in recent years. The U.S. Department of Education maintains a microsimulation model to generate forecasts of applications, but the data requirements of this model are fairly severe and the results subject to considerable error, at least in some years. This paper proposes an alternative model for predicting Pell program applications that uses aggregate data, yet avoids some of the limitations of simple linear models. Using the moments of the aggregate income distribution and other macrovariables, this model empirically performs no worse on average than the microsimulation model, and better in some periods. [
JEL I21, I28, C53] |
doi_str_mv | 10.1016/0272-7757(95)00020-K |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1307028602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ517813</ericid><els_id>027277579500020K</els_id><sourcerecordid>1307028602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-395a3edc7a5b32d8ff824e16985fab1b40233977e686f0e36e0018dec391104c3</originalsourceid><addsrcrecordid>eNp9UU1LwzAYDqLgnP6DHQpe9FBNmrZJL4KMbeoGXvQcsvRtzeiXSTrYvze1Y94MvEl4n4-8PEFoRvADwSR9xBGLQsYSdpcl9xjjCIfrMzQhnNGQUR6do8mJcomurN15UsIxnaDVsjWgpHW6KYMOqiroTFsaWQey6yqtpNNtY4PeDrh1pleuN7IKZFkaKKWDoG5zqOw1uihkZeHmeE7R53LxMX8JN--r1_nzJlQxjlxIs0RSyBWTyZZGOS8KHsVA0ownhdySrSdRmjEGKU8LDDQFjAnPQdGMEBwrOkW3o68f87sH68Su7U3jnxSEYoYjnnqLKYpHljKttQYK0RldS3MQBIshMjHkIYY8RJaI38jE2sveRpmBDtRJA36pFvJe7AWVJPbbYbhkXkql9jW0Ol-U-04Wiy9Xe7PZaAZG_3kt3hLCOKEefjrCPq29BiOs0tAoyLX_ECfyVv8_7A-maJT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1307028602</pqid></control><display><type>article</type><title>Forecasting pell program applications using structural aggregate models</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><source>Periodicals Index Online</source><creator>Cavin, Edward S.</creator><creatorcontrib>Cavin, Edward S.</creatorcontrib><description>Demand for postsecondary financial aid offered under the Pell Grant program has proved notoriously difficult to predict in recent years. The U.S. Department of Education maintains a microsimulation model to generate forecasts of applications, but the data requirements of this model are fairly severe and the results subject to considerable error, at least in some years. This paper proposes an alternative model for predicting Pell program applications that uses aggregate data, yet avoids some of the limitations of simple linear models. Using the moments of the aggregate income distribution and other macrovariables, this model empirically performs no worse on average than the microsimulation model, and better in some periods. [
JEL I21, I28, C53]</description><identifier>ISSN: 0272-7757</identifier><identifier>EISSN: 1873-7382</identifier><identifier>DOI: 10.1016/0272-7757(95)00020-K</identifier><language>eng</language><publisher>Cambridge, Mass., etc: Elsevier India Pvt Ltd</publisher><subject>Aggregate Model ; Higher Education ; Mathematical Models ; Microsimulation ; Paying for College ; Pell Grant Program ; Simulation ; Statistical Analysis ; Student Financial Aid ; Supply and Demand</subject><ispartof>Economics of education review, 1995, Vol.14 (4), p.385-394</ispartof><rights>1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c402t-395a3edc7a5b32d8ff824e16985fab1b40233977e686f0e36e0018dec391104c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/027277579500020K$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,4010,27846,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ517813$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeecoedu/v_3a14_3ay_3a1995_3ai_3a4_3ap_3a385-394.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavin, Edward S.</creatorcontrib><title>Forecasting pell program applications using structural aggregate models</title><title>Economics of education review</title><description>Demand for postsecondary financial aid offered under the Pell Grant program has proved notoriously difficult to predict in recent years. The U.S. Department of Education maintains a microsimulation model to generate forecasts of applications, but the data requirements of this model are fairly severe and the results subject to considerable error, at least in some years. This paper proposes an alternative model for predicting Pell program applications that uses aggregate data, yet avoids some of the limitations of simple linear models. Using the moments of the aggregate income distribution and other macrovariables, this model empirically performs no worse on average than the microsimulation model, and better in some periods. [
JEL I21, I28, C53]</description><subject>Aggregate Model</subject><subject>Higher Education</subject><subject>Mathematical Models</subject><subject>Microsimulation</subject><subject>Paying for College</subject><subject>Pell Grant Program</subject><subject>Simulation</subject><subject>Statistical Analysis</subject><subject>Student Financial Aid</subject><subject>Supply and Demand</subject><issn>0272-7757</issn><issn>1873-7382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>K30</sourceid><recordid>eNp9UU1LwzAYDqLgnP6DHQpe9FBNmrZJL4KMbeoGXvQcsvRtzeiXSTrYvze1Y94MvEl4n4-8PEFoRvADwSR9xBGLQsYSdpcl9xjjCIfrMzQhnNGQUR6do8mJcomurN15UsIxnaDVsjWgpHW6KYMOqiroTFsaWQey6yqtpNNtY4PeDrh1pleuN7IKZFkaKKWDoG5zqOw1uihkZeHmeE7R53LxMX8JN--r1_nzJlQxjlxIs0RSyBWTyZZGOS8KHsVA0ownhdySrSdRmjEGKU8LDDQFjAnPQdGMEBwrOkW3o68f87sH68Su7U3jnxSEYoYjnnqLKYpHljKttQYK0RldS3MQBIshMjHkIYY8RJaI38jE2sveRpmBDtRJA36pFvJe7AWVJPbbYbhkXkql9jW0Ol-U-04Wiy9Xe7PZaAZG_3kt3hLCOKEefjrCPq29BiOs0tAoyLX_ECfyVv8_7A-maJT4</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Cavin, Edward S.</creator><general>Elsevier India Pvt Ltd</general><general>Elsevier</general><general>Pergamon Press</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HNUUZ</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>1995</creationdate><title>Forecasting pell program applications using structural aggregate models</title><author>Cavin, Edward S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-395a3edc7a5b32d8ff824e16985fab1b40233977e686f0e36e0018dec391104c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Aggregate Model</topic><topic>Higher Education</topic><topic>Mathematical Models</topic><topic>Microsimulation</topic><topic>Paying for College</topic><topic>Pell Grant Program</topic><topic>Simulation</topic><topic>Statistical Analysis</topic><topic>Student Financial Aid</topic><topic>Supply and Demand</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavin, Edward S.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 21</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Economics of education review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavin, Edward S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ517813</ericid><atitle>Forecasting pell program applications using structural aggregate models</atitle><jtitle>Economics of education review</jtitle><date>1995</date><risdate>1995</risdate><volume>14</volume><issue>4</issue><spage>385</spage><epage>394</epage><pages>385-394</pages><issn>0272-7757</issn><eissn>1873-7382</eissn><abstract>Demand for postsecondary financial aid offered under the Pell Grant program has proved notoriously difficult to predict in recent years. The U.S. Department of Education maintains a microsimulation model to generate forecasts of applications, but the data requirements of this model are fairly severe and the results subject to considerable error, at least in some years. This paper proposes an alternative model for predicting Pell program applications that uses aggregate data, yet avoids some of the limitations of simple linear models. Using the moments of the aggregate income distribution and other macrovariables, this model empirically performs no worse on average than the microsimulation model, and better in some periods. [
JEL I21, I28, C53]</abstract><cop>Cambridge, Mass., etc</cop><pub>Elsevier India Pvt Ltd</pub><doi>10.1016/0272-7757(95)00020-K</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-7757 |
ispartof | Economics of education review, 1995, Vol.14 (4), p.385-394 |
issn | 0272-7757 1873-7382 |
language | eng |
recordid | cdi_proquest_journals_1307028602 |
source | RePEc; Elsevier ScienceDirect Journals; Periodicals Index Online |
subjects | Aggregate Model Higher Education Mathematical Models Microsimulation Paying for College Pell Grant Program Simulation Statistical Analysis Student Financial Aid Supply and Demand |
title | Forecasting pell program applications using structural aggregate models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20pell%20program%20applications%20using%20structural%20aggregate%20models&rft.jtitle=Economics%20of%20education%20review&rft.au=Cavin,%20Edward%20S.&rft.date=1995&rft.volume=14&rft.issue=4&rft.spage=385&rft.epage=394&rft.pages=385-394&rft.issn=0272-7757&rft.eissn=1873-7382&rft_id=info:doi/10.1016/0272-7757(95)00020-K&rft_dat=%3Cproquest_cross%3E1307028602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1307028602&rft_id=info:pmid/&rft_ericid=EJ517813&rft_els_id=027277579500020K&rfr_iscdi=true |