A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages

An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD)

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 1993-06, Vol.58 (2), p.211-232
1. Verfasser: Cudeck, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue 2
container_start_page 211
container_title Psychometrika
container_volume 58
creator Cudeck, Robert
description An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD)
doi_str_mv 10.1007/BF02294574
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1304586157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ466303</ericid><sourcerecordid>1304586157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-6f757b91867cea082928390d3162b3c5057919a24a20dded4558396ad1edfa803</originalsourceid><addsrcrecordid>eNpFkM9LwzAYhoMoOKcXzx4CehKqX5KmSY5z7IdSVJieS5amW0e31qTd2H9vxmSevsP7fC8vD0K3BJ4IgHh-GQOlKuYiPkM9IhOIQEk4Rz0AxiJGKLtEV96vAEARKXsoH-BZuW4qiye68z56t7u23uBPVxubd87ionZ4WG-1K_XGWDxrXWfaQzDY6GrvS493ZbvE03KxjFK7tVWg103XWodTvVl0emH9NboodOXtzd_to-_x6Gs4jdKPyetwkEaGgWqjpBBczMOuRBirQVJFJVOQM5LQOTMcuFBEaRprCnlu85jzkCc6JzYvtATWR_fH3sbVP531bbaqOxd2-owwiLlMCBeBejxSxtXeO1tkjSvX2u0zAtnBYvZvMcAPf5XaG10VLlgo_ekjloEXPGB3R8y60pzS0VucJCyY_wXwA3kZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304586157</pqid></control><display><type>article</type><title>A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages</title><source>SpringerLink Journals</source><source>Periodicals Index Online</source><creator>Cudeck, Robert</creator><creatorcontrib>Cudeck, Robert</creatorcontrib><description>An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD)</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/BF02294574</identifier><identifier>CODEN: PSMTA2</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Analysis of Covariance ; Biological and medical sciences ; Computer Software ; Covariance Structure Models ; Equations (Mathematics) ; Estimation (Mathematics) ; Factor Analysis ; Fundamental and applied biological sciences. Psychology ; Gauss Newton Procedure ; Mathematical Models ; Power (Statistics) ; Programing Languages ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Simplex Models ; Statistics. Mathematics ; Structural Equation Models</subject><ispartof>Psychometrika, 1993-06, Vol.58 (2), p.211-232</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-6f757b91867cea082928390d3162b3c5057919a24a20dded4558396ad1edfa803</citedby><cites>FETCH-LOGICAL-c309t-6f757b91867cea082928390d3162b3c5057919a24a20dded4558396ad1edfa803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27846,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ466303$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4800775$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cudeck, Robert</creatorcontrib><title>A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages</title><title>Psychometrika</title><description>An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD)</description><subject>Algorithms</subject><subject>Analysis of Covariance</subject><subject>Biological and medical sciences</subject><subject>Computer Software</subject><subject>Covariance Structure Models</subject><subject>Equations (Mathematics)</subject><subject>Estimation (Mathematics)</subject><subject>Factor Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gauss Newton Procedure</subject><subject>Mathematical Models</subject><subject>Power (Statistics)</subject><subject>Programing Languages</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Simplex Models</subject><subject>Statistics. Mathematics</subject><subject>Structural Equation Models</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNpFkM9LwzAYhoMoOKcXzx4CehKqX5KmSY5z7IdSVJieS5amW0e31qTd2H9vxmSevsP7fC8vD0K3BJ4IgHh-GQOlKuYiPkM9IhOIQEk4Rz0AxiJGKLtEV96vAEARKXsoH-BZuW4qiye68z56t7u23uBPVxubd87ionZ4WG-1K_XGWDxrXWfaQzDY6GrvS493ZbvE03KxjFK7tVWg103XWodTvVl0emH9NboodOXtzd_to-_x6Gs4jdKPyetwkEaGgWqjpBBczMOuRBirQVJFJVOQM5LQOTMcuFBEaRprCnlu85jzkCc6JzYvtATWR_fH3sbVP531bbaqOxd2-owwiLlMCBeBejxSxtXeO1tkjSvX2u0zAtnBYvZvMcAPf5XaG10VLlgo_ekjloEXPGB3R8y60pzS0VucJCyY_wXwA3kZ</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>Cudeck, Robert</creator><general>Springer</general><general>Psychometric Society, etc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>GHXMH</scope><scope>GPCCI</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19930601</creationdate><title>A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages</title><author>Cudeck, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-6f757b91867cea082928390d3162b3c5057919a24a20dded4558396ad1edfa803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithms</topic><topic>Analysis of Covariance</topic><topic>Biological and medical sciences</topic><topic>Computer Software</topic><topic>Covariance Structure Models</topic><topic>Equations (Mathematics)</topic><topic>Estimation (Mathematics)</topic><topic>Factor Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gauss Newton Procedure</topic><topic>Mathematical Models</topic><topic>Power (Statistics)</topic><topic>Programing Languages</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Simplex Models</topic><topic>Statistics. Mathematics</topic><topic>Structural Equation Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cudeck, Robert</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 09</collection><collection>Periodicals Index Online Segment 10</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cudeck, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ466303</ericid><atitle>A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages</atitle><jtitle>Psychometrika</jtitle><date>1993-06-01</date><risdate>1993</risdate><volume>58</volume><issue>2</issue><spage>211</spage><epage>232</epage><pages>211-232</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><coden>PSMTA2</coden><abstract>An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD)</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF02294574</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 1993-06, Vol.58 (2), p.211-232
issn 0033-3123
1860-0980
language eng
recordid cdi_proquest_journals_1304586157
source SpringerLink Journals; Periodicals Index Online
subjects Algorithms
Analysis of Covariance
Biological and medical sciences
Computer Software
Covariance Structure Models
Equations (Mathematics)
Estimation (Mathematics)
Factor Analysis
Fundamental and applied biological sciences. Psychology
Gauss Newton Procedure
Mathematical Models
Power (Statistics)
Programing Languages
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics. Statistics. Methodology
Simplex Models
Statistics. Mathematics
Structural Equation Models
title A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Gauss-Newton%20Procedure%20for%20Covariance%20Structure%20Analysis%20with%20High-Level%20Computer%20Languages&rft.jtitle=Psychometrika&rft.au=Cudeck,%20Robert&rft.date=1993-06-01&rft.volume=58&rft.issue=2&rft.spage=211&rft.epage=232&rft.pages=211-232&rft.issn=0033-3123&rft.eissn=1860-0980&rft.coden=PSMTA2&rft_id=info:doi/10.1007/BF02294574&rft_dat=%3Cproquest_cross%3E1304586157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304586157&rft_id=info:pmid/&rft_ericid=EJ466303&rfr_iscdi=true