A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages
An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD)
Gespeichert in:
Veröffentlicht in: | Psychometrika 1993-06, Vol.58 (2), p.211-232 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | 2 |
container_start_page | 211 |
container_title | Psychometrika |
container_volume | 58 |
creator | Cudeck, Robert |
description | An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD) |
doi_str_mv | 10.1007/BF02294574 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1304586157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ466303</ericid><sourcerecordid>1304586157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-6f757b91867cea082928390d3162b3c5057919a24a20dded4558396ad1edfa803</originalsourceid><addsrcrecordid>eNpFkM9LwzAYhoMoOKcXzx4CehKqX5KmSY5z7IdSVJieS5amW0e31qTd2H9vxmSevsP7fC8vD0K3BJ4IgHh-GQOlKuYiPkM9IhOIQEk4Rz0AxiJGKLtEV96vAEARKXsoH-BZuW4qiye68z56t7u23uBPVxubd87ionZ4WG-1K_XGWDxrXWfaQzDY6GrvS493ZbvE03KxjFK7tVWg103XWodTvVl0emH9NboodOXtzd_to-_x6Gs4jdKPyetwkEaGgWqjpBBczMOuRBirQVJFJVOQM5LQOTMcuFBEaRprCnlu85jzkCc6JzYvtATWR_fH3sbVP531bbaqOxd2-owwiLlMCBeBejxSxtXeO1tkjSvX2u0zAtnBYvZvMcAPf5XaG10VLlgo_ekjloEXPGB3R8y60pzS0VucJCyY_wXwA3kZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304586157</pqid></control><display><type>article</type><title>A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages</title><source>SpringerLink Journals</source><source>Periodicals Index Online</source><creator>Cudeck, Robert</creator><creatorcontrib>Cudeck, Robert</creatorcontrib><description>An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD)</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/BF02294574</identifier><identifier>CODEN: PSMTA2</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Analysis of Covariance ; Biological and medical sciences ; Computer Software ; Covariance Structure Models ; Equations (Mathematics) ; Estimation (Mathematics) ; Factor Analysis ; Fundamental and applied biological sciences. Psychology ; Gauss Newton Procedure ; Mathematical Models ; Power (Statistics) ; Programing Languages ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Simplex Models ; Statistics. Mathematics ; Structural Equation Models</subject><ispartof>Psychometrika, 1993-06, Vol.58 (2), p.211-232</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-6f757b91867cea082928390d3162b3c5057919a24a20dded4558396ad1edfa803</citedby><cites>FETCH-LOGICAL-c309t-6f757b91867cea082928390d3162b3c5057919a24a20dded4558396ad1edfa803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27846,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ466303$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4800775$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cudeck, Robert</creatorcontrib><title>A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages</title><title>Psychometrika</title><description>An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD)</description><subject>Algorithms</subject><subject>Analysis of Covariance</subject><subject>Biological and medical sciences</subject><subject>Computer Software</subject><subject>Covariance Structure Models</subject><subject>Equations (Mathematics)</subject><subject>Estimation (Mathematics)</subject><subject>Factor Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gauss Newton Procedure</subject><subject>Mathematical Models</subject><subject>Power (Statistics)</subject><subject>Programing Languages</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Simplex Models</subject><subject>Statistics. Mathematics</subject><subject>Structural Equation Models</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNpFkM9LwzAYhoMoOKcXzx4CehKqX5KmSY5z7IdSVJieS5amW0e31qTd2H9vxmSevsP7fC8vD0K3BJ4IgHh-GQOlKuYiPkM9IhOIQEk4Rz0AxiJGKLtEV96vAEARKXsoH-BZuW4qiye68z56t7u23uBPVxubd87ionZ4WG-1K_XGWDxrXWfaQzDY6GrvS493ZbvE03KxjFK7tVWg103XWodTvVl0emH9NboodOXtzd_to-_x6Gs4jdKPyetwkEaGgWqjpBBczMOuRBirQVJFJVOQM5LQOTMcuFBEaRprCnlu85jzkCc6JzYvtATWR_fH3sbVP531bbaqOxd2-owwiLlMCBeBejxSxtXeO1tkjSvX2u0zAtnBYvZvMcAPf5XaG10VLlgo_ekjloEXPGB3R8y60pzS0VucJCyY_wXwA3kZ</recordid><startdate>19930601</startdate><enddate>19930601</enddate><creator>Cudeck, Robert</creator><general>Springer</general><general>Psychometric Society, etc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>GHXMH</scope><scope>GPCCI</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19930601</creationdate><title>A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages</title><author>Cudeck, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-6f757b91867cea082928390d3162b3c5057919a24a20dded4558396ad1edfa803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithms</topic><topic>Analysis of Covariance</topic><topic>Biological and medical sciences</topic><topic>Computer Software</topic><topic>Covariance Structure Models</topic><topic>Equations (Mathematics)</topic><topic>Estimation (Mathematics)</topic><topic>Factor Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gauss Newton Procedure</topic><topic>Mathematical Models</topic><topic>Power (Statistics)</topic><topic>Programing Languages</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Simplex Models</topic><topic>Statistics. Mathematics</topic><topic>Structural Equation Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cudeck, Robert</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 09</collection><collection>Periodicals Index Online Segment 10</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cudeck, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ466303</ericid><atitle>A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages</atitle><jtitle>Psychometrika</jtitle><date>1993-06-01</date><risdate>1993</risdate><volume>58</volume><issue>2</issue><spage>211</spage><epage>232</epage><pages>211-232</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><coden>PSMTA2</coden><abstract>An implementation of the Gauss-Newton algorithm for the analysis of covariance structure that is specifically adapted for high-level computer languages is reviewed. This simple method for estimating structural equation models is useful for a variety of standard models, as is illustrated. (SLD)</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF02294574</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 1993-06, Vol.58 (2), p.211-232 |
issn | 0033-3123 1860-0980 |
language | eng |
recordid | cdi_proquest_journals_1304586157 |
source | SpringerLink Journals; Periodicals Index Online |
subjects | Algorithms Analysis of Covariance Biological and medical sciences Computer Software Covariance Structure Models Equations (Mathematics) Estimation (Mathematics) Factor Analysis Fundamental and applied biological sciences. Psychology Gauss Newton Procedure Mathematical Models Power (Statistics) Programing Languages Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychometrics. Statistics. Methodology Simplex Models Statistics. Mathematics Structural Equation Models |
title | A Simple Gauss-Newton Procedure for Covariance Structure Analysis with High-Level Computer Languages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Gauss-Newton%20Procedure%20for%20Covariance%20Structure%20Analysis%20with%20High-Level%20Computer%20Languages&rft.jtitle=Psychometrika&rft.au=Cudeck,%20Robert&rft.date=1993-06-01&rft.volume=58&rft.issue=2&rft.spage=211&rft.epage=232&rft.pages=211-232&rft.issn=0033-3123&rft.eissn=1860-0980&rft.coden=PSMTA2&rft_id=info:doi/10.1007/BF02294574&rft_dat=%3Cproquest_cross%3E1304586157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304586157&rft_id=info:pmid/&rft_ericid=EJ466303&rfr_iscdi=true |