Clustering N objects into K groups under optimal scaling of variables
We propose a method to reduce many categorical variables to one variable with k categories, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of nominal, ordinal or numerical variables or any mix of these, and they are represented as n points in p -dimensional E...
Gespeichert in:
Veröffentlicht in: | Psychometrika 1989-12, Vol.54 (4), p.699-706 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 706 |
---|---|
container_issue | 4 |
container_start_page | 699 |
container_title | Psychometrika |
container_volume | 54 |
creator | VAN BUUREN, S HEISER, W. J |
description | We propose a method to reduce many categorical variables to one variable with k categories, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of nominal, ordinal or numerical variables or any mix of these, and they are represented as n points in p -dimensional Euclidean space. Starting from homogeneity analysis, also called multiple correspondence analysis, the essential feature of our approach is that these object points are restricted to lie at only one of k locations. It follows that these k locations must be equal to the centroids of all objects belonging to the same group, which corresponds to a sum of squared distances clustering criterion. The problem is not only to estimate the group allocation, but also to obtain an optimal transformation of the data matrix. An alternating least squares algorithm and an example are given. |
doi_str_mv | 10.1007/BF02296404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1304585897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1304585897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-eb2479fd4194513a08b43ba29b91dcc59d292058192727d1269a797f33c51c323</originalsourceid><addsrcrecordid>eNpFkE1LwzAYx4MoOKcXP0FAT0L1yVuT56hjU3HoRc8lTdPRUZuatILf3o4NPT2X3_N_I-SSwS0D0HcPK-AccwnyiMyYySEDNHBMZgBCZIJxcUrOUtoCADJjZmS5aMc0-Nh0G_pKQ7n1bki06YZAX-gmhrFPdOwqH2noh-bTtjQ52-7oUNNvGxtbtj6dk5PatslfHO6cfKyW74unbP32-Ly4X2eOSzVkvuRSY11JhlIxYcGUUpSWY4msck5hxZGDMgy55rpiPEerUddCOMWc4GJOrva6fQxfo09DsQ1j7CbLggmQyiiDeqJu9pSLIaXo66KPU_T4UzAodjMV_zNN8PVB0u6a1dF2rkl_H7kGlFKJX5v8ZD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304585897</pqid></control><display><type>article</type><title>Clustering N objects into K groups under optimal scaling of variables</title><source>Periodicals Index Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>VAN BUUREN, S ; HEISER, W. J</creator><creatorcontrib>VAN BUUREN, S ; HEISER, W. J</creatorcontrib><description>We propose a method to reduce many categorical variables to one variable with k categories, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of nominal, ordinal or numerical variables or any mix of these, and they are represented as n points in p -dimensional Euclidean space. Starting from homogeneity analysis, also called multiple correspondence analysis, the essential feature of our approach is that these object points are restricted to lie at only one of k locations. It follows that these k locations must be equal to the centroids of all objects belonging to the same group, which corresponds to a sum of squared distances clustering criterion. The problem is not only to estimate the group allocation, but also to obtain an optimal transformation of the data matrix. An alternating least squares algorithm and an example are given.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/BF02296404</identifier><identifier>CODEN: PSMTA2</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Statistics. Mathematics</subject><ispartof>Psychometrika, 1989-12, Vol.54 (4), p.699-706</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-eb2479fd4194513a08b43ba29b91dcc59d292058192727d1269a797f33c51c323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27868,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6709445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VAN BUUREN, S</creatorcontrib><creatorcontrib>HEISER, W. J</creatorcontrib><title>Clustering N objects into K groups under optimal scaling of variables</title><title>Psychometrika</title><description>We propose a method to reduce many categorical variables to one variable with k categories, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of nominal, ordinal or numerical variables or any mix of these, and they are represented as n points in p -dimensional Euclidean space. Starting from homogeneity analysis, also called multiple correspondence analysis, the essential feature of our approach is that these object points are restricted to lie at only one of k locations. It follows that these k locations must be equal to the centroids of all objects belonging to the same group, which corresponds to a sum of squared distances clustering criterion. The problem is not only to estimate the group allocation, but also to obtain an optimal transformation of the data matrix. An alternating least squares algorithm and an example are given.</description><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Statistics. Mathematics</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNpFkE1LwzAYx4MoOKcXP0FAT0L1yVuT56hjU3HoRc8lTdPRUZuatILf3o4NPT2X3_N_I-SSwS0D0HcPK-AccwnyiMyYySEDNHBMZgBCZIJxcUrOUtoCADJjZmS5aMc0-Nh0G_pKQ7n1bki06YZAX-gmhrFPdOwqH2noh-bTtjQ52-7oUNNvGxtbtj6dk5PatslfHO6cfKyW74unbP32-Ly4X2eOSzVkvuRSY11JhlIxYcGUUpSWY4msck5hxZGDMgy55rpiPEerUddCOMWc4GJOrva6fQxfo09DsQ1j7CbLggmQyiiDeqJu9pSLIaXo66KPU_T4UzAodjMV_zNN8PVB0u6a1dF2rkl_H7kGlFKJX5v8ZD8</recordid><startdate>19891201</startdate><enddate>19891201</enddate><creator>VAN BUUREN, S</creator><creator>HEISER, W. J</creator><general>Springer</general><general>Psychometric Society, etc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>GHXMH</scope><scope>GPCCI</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19891201</creationdate><title>Clustering N objects into K groups under optimal scaling of variables</title><author>VAN BUUREN, S ; HEISER, W. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-eb2479fd4194513a08b43ba29b91dcc59d292058192727d1269a797f33c51c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Statistics. Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VAN BUUREN, S</creatorcontrib><creatorcontrib>HEISER, W. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 09</collection><collection>Periodicals Index Online Segment 10</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VAN BUUREN, S</au><au>HEISER, W. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering N objects into K groups under optimal scaling of variables</atitle><jtitle>Psychometrika</jtitle><date>1989-12-01</date><risdate>1989</risdate><volume>54</volume><issue>4</issue><spage>699</spage><epage>706</epage><pages>699-706</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><coden>PSMTA2</coden><abstract>We propose a method to reduce many categorical variables to one variable with k categories, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of nominal, ordinal or numerical variables or any mix of these, and they are represented as n points in p -dimensional Euclidean space. Starting from homogeneity analysis, also called multiple correspondence analysis, the essential feature of our approach is that these object points are restricted to lie at only one of k locations. It follows that these k locations must be equal to the centroids of all objects belonging to the same group, which corresponds to a sum of squared distances clustering criterion. The problem is not only to estimate the group allocation, but also to obtain an optimal transformation of the data matrix. An alternating least squares algorithm and an example are given.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF02296404</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 1989-12, Vol.54 (4), p.699-706 |
issn | 0033-3123 1860-0980 |
language | eng |
recordid | cdi_proquest_journals_1304585897 |
source | Periodicals Index Online; SpringerLink Journals - AutoHoldings |
subjects | Biological and medical sciences Fundamental and applied biological sciences. Psychology Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychometrics. Statistics. Methodology Statistics. Mathematics |
title | Clustering N objects into K groups under optimal scaling of variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20N%20objects%20into%20K%20groups%20under%20optimal%20scaling%20of%20variables&rft.jtitle=Psychometrika&rft.au=VAN%20BUUREN,%20S&rft.date=1989-12-01&rft.volume=54&rft.issue=4&rft.spage=699&rft.epage=706&rft.pages=699-706&rft.issn=0033-3123&rft.eissn=1860-0980&rft.coden=PSMTA2&rft_id=info:doi/10.1007/BF02296404&rft_dat=%3Cproquest_cross%3E1304585897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304585897&rft_id=info:pmid/&rfr_iscdi=true |