Clustering N objects into K groups under optimal scaling of variables

We propose a method to reduce many categorical variables to one variable with k categories, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of nominal, ordinal or numerical variables or any mix of these, and they are represented as n points in p -dimensional E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 1989-12, Vol.54 (4), p.699-706
Hauptverfasser: VAN BUUREN, S, HEISER, W. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 706
container_issue 4
container_start_page 699
container_title Psychometrika
container_volume 54
creator VAN BUUREN, S
HEISER, W. J
description We propose a method to reduce many categorical variables to one variable with k categories, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of nominal, ordinal or numerical variables or any mix of these, and they are represented as n points in p -dimensional Euclidean space. Starting from homogeneity analysis, also called multiple correspondence analysis, the essential feature of our approach is that these object points are restricted to lie at only one of k locations. It follows that these k locations must be equal to the centroids of all objects belonging to the same group, which corresponds to a sum of squared distances clustering criterion. The problem is not only to estimate the group allocation, but also to obtain an optimal transformation of the data matrix. An alternating least squares algorithm and an example are given.
doi_str_mv 10.1007/BF02296404
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1304585897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1304585897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-eb2479fd4194513a08b43ba29b91dcc59d292058192727d1269a797f33c51c323</originalsourceid><addsrcrecordid>eNpFkE1LwzAYx4MoOKcXP0FAT0L1yVuT56hjU3HoRc8lTdPRUZuatILf3o4NPT2X3_N_I-SSwS0D0HcPK-AccwnyiMyYySEDNHBMZgBCZIJxcUrOUtoCADJjZmS5aMc0-Nh0G_pKQ7n1bki06YZAX-gmhrFPdOwqH2noh-bTtjQ52-7oUNNvGxtbtj6dk5PatslfHO6cfKyW74unbP32-Ly4X2eOSzVkvuRSY11JhlIxYcGUUpSWY4msck5hxZGDMgy55rpiPEerUddCOMWc4GJOrva6fQxfo09DsQ1j7CbLggmQyiiDeqJu9pSLIaXo66KPU_T4UzAodjMV_zNN8PVB0u6a1dF2rkl_H7kGlFKJX5v8ZD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304585897</pqid></control><display><type>article</type><title>Clustering N objects into K groups under optimal scaling of variables</title><source>Periodicals Index Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>VAN BUUREN, S ; HEISER, W. J</creator><creatorcontrib>VAN BUUREN, S ; HEISER, W. J</creatorcontrib><description>We propose a method to reduce many categorical variables to one variable with k categories, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of nominal, ordinal or numerical variables or any mix of these, and they are represented as n points in p -dimensional Euclidean space. Starting from homogeneity analysis, also called multiple correspondence analysis, the essential feature of our approach is that these object points are restricted to lie at only one of k locations. It follows that these k locations must be equal to the centroids of all objects belonging to the same group, which corresponds to a sum of squared distances clustering criterion. The problem is not only to estimate the group allocation, but also to obtain an optimal transformation of the data matrix. An alternating least squares algorithm and an example are given.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/BF02296404</identifier><identifier>CODEN: PSMTA2</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics. Statistics. Methodology ; Statistics. Mathematics</subject><ispartof>Psychometrika, 1989-12, Vol.54 (4), p.699-706</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-eb2479fd4194513a08b43ba29b91dcc59d292058192727d1269a797f33c51c323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27868,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6709445$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VAN BUUREN, S</creatorcontrib><creatorcontrib>HEISER, W. J</creatorcontrib><title>Clustering N objects into K groups under optimal scaling of variables</title><title>Psychometrika</title><description>We propose a method to reduce many categorical variables to one variable with k categories, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of nominal, ordinal or numerical variables or any mix of these, and they are represented as n points in p -dimensional Euclidean space. Starting from homogeneity analysis, also called multiple correspondence analysis, the essential feature of our approach is that these object points are restricted to lie at only one of k locations. It follows that these k locations must be equal to the centroids of all objects belonging to the same group, which corresponds to a sum of squared distances clustering criterion. The problem is not only to estimate the group allocation, but also to obtain an optimal transformation of the data matrix. An alternating least squares algorithm and an example are given.</description><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Statistics. Mathematics</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNpFkE1LwzAYx4MoOKcXP0FAT0L1yVuT56hjU3HoRc8lTdPRUZuatILf3o4NPT2X3_N_I-SSwS0D0HcPK-AccwnyiMyYySEDNHBMZgBCZIJxcUrOUtoCADJjZmS5aMc0-Nh0G_pKQ7n1bki06YZAX-gmhrFPdOwqH2noh-bTtjQ52-7oUNNvGxtbtj6dk5PatslfHO6cfKyW74unbP32-Ly4X2eOSzVkvuRSY11JhlIxYcGUUpSWY4msck5hxZGDMgy55rpiPEerUddCOMWc4GJOrva6fQxfo09DsQ1j7CbLggmQyiiDeqJu9pSLIaXo66KPU_T4UzAodjMV_zNN8PVB0u6a1dF2rkl_H7kGlFKJX5v8ZD8</recordid><startdate>19891201</startdate><enddate>19891201</enddate><creator>VAN BUUREN, S</creator><creator>HEISER, W. J</creator><general>Springer</general><general>Psychometric Society, etc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>GHXMH</scope><scope>GPCCI</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19891201</creationdate><title>Clustering N objects into K groups under optimal scaling of variables</title><author>VAN BUUREN, S ; HEISER, W. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-eb2479fd4194513a08b43ba29b91dcc59d292058192727d1269a797f33c51c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Statistics. Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VAN BUUREN, S</creatorcontrib><creatorcontrib>HEISER, W. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 09</collection><collection>Periodicals Index Online Segment 10</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VAN BUUREN, S</au><au>HEISER, W. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering N objects into K groups under optimal scaling of variables</atitle><jtitle>Psychometrika</jtitle><date>1989-12-01</date><risdate>1989</risdate><volume>54</volume><issue>4</issue><spage>699</spage><epage>706</epage><pages>699-706</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><coden>PSMTA2</coden><abstract>We propose a method to reduce many categorical variables to one variable with k categories, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of nominal, ordinal or numerical variables or any mix of these, and they are represented as n points in p -dimensional Euclidean space. Starting from homogeneity analysis, also called multiple correspondence analysis, the essential feature of our approach is that these object points are restricted to lie at only one of k locations. It follows that these k locations must be equal to the centroids of all objects belonging to the same group, which corresponds to a sum of squared distances clustering criterion. The problem is not only to estimate the group allocation, but also to obtain an optimal transformation of the data matrix. An alternating least squares algorithm and an example are given.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF02296404</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 1989-12, Vol.54 (4), p.699-706
issn 0033-3123
1860-0980
language eng
recordid cdi_proquest_journals_1304585897
source Periodicals Index Online; SpringerLink Journals - AutoHoldings
subjects Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics. Statistics. Methodology
Statistics. Mathematics
title Clustering N objects into K groups under optimal scaling of variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20N%20objects%20into%20K%20groups%20under%20optimal%20scaling%20of%20variables&rft.jtitle=Psychometrika&rft.au=VAN%20BUUREN,%20S&rft.date=1989-12-01&rft.volume=54&rft.issue=4&rft.spage=699&rft.epage=706&rft.pages=699-706&rft.issn=0033-3123&rft.eissn=1860-0980&rft.coden=PSMTA2&rft_id=info:doi/10.1007/BF02296404&rft_dat=%3Cproquest_cross%3E1304585897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304585897&rft_id=info:pmid/&rfr_iscdi=true