Clustering with Relational Constraint
The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optim...
Gespeichert in:
Veröffentlicht in: | Psychometrika 1982-12, Vol.47 (4), p.413-426 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 426 |
---|---|
container_issue | 4 |
container_start_page | 413 |
container_title | Psychometrika |
container_volume | 47 |
creator | Ferligoj, Anuška Batagelj, Vladimir |
description | The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optimization procedure, CLUDIA. To illustrate these procedures, clusterings of the European countries are given based on the developmental indicators where the relation is determined by the geographical neighbourhoods of countries. |
doi_str_mv | 10.1007/BF02293706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1304585451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1304585451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-a7cd7fb60ce2a527f80eb16db2db1d0a5974432853eceb5cd972ffbd56bfcb6c3</originalsourceid><addsrcrecordid>eNpFkMtKxDAYRoMoWEc3PkFB3AjVP0lz6VLLjAoDgug65KodajMmKeLbOzKCq29z-DgchM4xXGMAcXO3AkI6KoAfoApLDg10Eg5RBUBpQzGhx-gk5w0AdFjKCl3245yLT8P0Vn8N5b1-9qMuQ5z0WPdxyiXpYSqn6CjoMfuzv12g19XypX9o1k_3j_3turGEidJoYZ0IhoP1RDMiggRvMHeGOIMdaNaJtqVEMuqtN8y6TpAQjGPcBGu4pQt0sf_dpvg5-1zUJs5p55IVptAyyVqGd9TVnrIp5px8UNs0fOj0rTCo3wzqPwP9AUH5TtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304585451</pqid></control><display><type>article</type><title>Clustering with Relational Constraint</title><source>Periodicals Index Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ferligoj, Anuška ; Batagelj, Vladimir</creator><creatorcontrib>Ferligoj, Anuška ; Batagelj, Vladimir</creatorcontrib><description>The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optimization procedure, CLUDIA. To illustrate these procedures, clusterings of the European countries are given based on the developmental indicators where the relation is determined by the geographical neighbourhoods of countries.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/BF02293706</identifier><language>eng</language><publisher>Colorado Springs, Colo: Psychometric Society, etc</publisher><ispartof>Psychometrika, 1982-12, Vol.47 (4), p.413-426</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-a7cd7fb60ce2a527f80eb16db2db1d0a5974432853eceb5cd972ffbd56bfcb6c3</citedby><cites>FETCH-LOGICAL-c257t-a7cd7fb60ce2a527f80eb16db2db1d0a5974432853eceb5cd972ffbd56bfcb6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27848,27903,27904</link.rule.ids></links><search><creatorcontrib>Ferligoj, Anuška</creatorcontrib><creatorcontrib>Batagelj, Vladimir</creatorcontrib><title>Clustering with Relational Constraint</title><title>Psychometrika</title><description>The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optimization procedure, CLUDIA. To illustrate these procedures, clusterings of the European countries are given based on the developmental indicators where the relation is determined by the geographical neighbourhoods of countries.</description><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNpFkMtKxDAYRoMoWEc3PkFB3AjVP0lz6VLLjAoDgug65KodajMmKeLbOzKCq29z-DgchM4xXGMAcXO3AkI6KoAfoApLDg10Eg5RBUBpQzGhx-gk5w0AdFjKCl3245yLT8P0Vn8N5b1-9qMuQ5z0WPdxyiXpYSqn6CjoMfuzv12g19XypX9o1k_3j_3turGEidJoYZ0IhoP1RDMiggRvMHeGOIMdaNaJtqVEMuqtN8y6TpAQjGPcBGu4pQt0sf_dpvg5-1zUJs5p55IVptAyyVqGd9TVnrIp5px8UNs0fOj0rTCo3wzqPwP9AUH5TtA</recordid><startdate>198212</startdate><enddate>198212</enddate><creator>Ferligoj, Anuška</creator><creator>Batagelj, Vladimir</creator><general>Psychometric Society, etc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GHXMH</scope><scope>GPCCI</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>198212</creationdate><title>Clustering with Relational Constraint</title><author>Ferligoj, Anuška ; Batagelj, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-a7cd7fb60ce2a527f80eb16db2db1d0a5974432853eceb5cd972ffbd56bfcb6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferligoj, Anuška</creatorcontrib><creatorcontrib>Batagelj, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 09</collection><collection>Periodicals Index Online Segment 10</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferligoj, Anuška</au><au>Batagelj, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering with Relational Constraint</atitle><jtitle>Psychometrika</jtitle><date>1982-12</date><risdate>1982</risdate><volume>47</volume><issue>4</issue><spage>413</spage><epage>426</epage><pages>413-426</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optimization procedure, CLUDIA. To illustrate these procedures, clusterings of the European countries are given based on the developmental indicators where the relation is determined by the geographical neighbourhoods of countries.</abstract><cop>Colorado Springs, Colo</cop><pub>Psychometric Society, etc</pub><doi>10.1007/BF02293706</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 1982-12, Vol.47 (4), p.413-426 |
issn | 0033-3123 1860-0980 |
language | eng |
recordid | cdi_proquest_journals_1304585451 |
source | Periodicals Index Online; SpringerLink Journals - AutoHoldings |
title | Clustering with Relational Constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20with%20Relational%20Constraint&rft.jtitle=Psychometrika&rft.au=Ferligoj,%20Anu%C5%A1ka&rft.date=1982-12&rft.volume=47&rft.issue=4&rft.spage=413&rft.epage=426&rft.pages=413-426&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/BF02293706&rft_dat=%3Cproquest_cross%3E1304585451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304585451&rft_id=info:pmid/&rfr_iscdi=true |