Clustering with Relational Constraint

The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 1982-12, Vol.47 (4), p.413-426
Hauptverfasser: Ferligoj, Anuška, Batagelj, Vladimir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 4
container_start_page 413
container_title Psychometrika
container_volume 47
creator Ferligoj, Anuška
Batagelj, Vladimir
description The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optimization procedure, CLUDIA. To illustrate these procedures, clusterings of the European countries are given based on the developmental indicators where the relation is determined by the geographical neighbourhoods of countries.
doi_str_mv 10.1007/BF02293706
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1304585451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1304585451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-a7cd7fb60ce2a527f80eb16db2db1d0a5974432853eceb5cd972ffbd56bfcb6c3</originalsourceid><addsrcrecordid>eNpFkMtKxDAYRoMoWEc3PkFB3AjVP0lz6VLLjAoDgug65KodajMmKeLbOzKCq29z-DgchM4xXGMAcXO3AkI6KoAfoApLDg10Eg5RBUBpQzGhx-gk5w0AdFjKCl3245yLT8P0Vn8N5b1-9qMuQ5z0WPdxyiXpYSqn6CjoMfuzv12g19XypX9o1k_3j_3turGEidJoYZ0IhoP1RDMiggRvMHeGOIMdaNaJtqVEMuqtN8y6TpAQjGPcBGu4pQt0sf_dpvg5-1zUJs5p55IVptAyyVqGd9TVnrIp5px8UNs0fOj0rTCo3wzqPwP9AUH5TtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304585451</pqid></control><display><type>article</type><title>Clustering with Relational Constraint</title><source>Periodicals Index Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ferligoj, Anuška ; Batagelj, Vladimir</creator><creatorcontrib>Ferligoj, Anuška ; Batagelj, Vladimir</creatorcontrib><description>The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optimization procedure, CLUDIA. To illustrate these procedures, clusterings of the European countries are given based on the developmental indicators where the relation is determined by the geographical neighbourhoods of countries.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/BF02293706</identifier><language>eng</language><publisher>Colorado Springs, Colo: Psychometric Society, etc</publisher><ispartof>Psychometrika, 1982-12, Vol.47 (4), p.413-426</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-a7cd7fb60ce2a527f80eb16db2db1d0a5974432853eceb5cd972ffbd56bfcb6c3</citedby><cites>FETCH-LOGICAL-c257t-a7cd7fb60ce2a527f80eb16db2db1d0a5974432853eceb5cd972ffbd56bfcb6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27848,27903,27904</link.rule.ids></links><search><creatorcontrib>Ferligoj, Anuška</creatorcontrib><creatorcontrib>Batagelj, Vladimir</creatorcontrib><title>Clustering with Relational Constraint</title><title>Psychometrika</title><description>The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optimization procedure, CLUDIA. To illustrate these procedures, clusterings of the European countries are given based on the developmental indicators where the relation is determined by the geographical neighbourhoods of countries.</description><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNpFkMtKxDAYRoMoWEc3PkFB3AjVP0lz6VLLjAoDgug65KodajMmKeLbOzKCq29z-DgchM4xXGMAcXO3AkI6KoAfoApLDg10Eg5RBUBpQzGhx-gk5w0AdFjKCl3245yLT8P0Vn8N5b1-9qMuQ5z0WPdxyiXpYSqn6CjoMfuzv12g19XypX9o1k_3j_3turGEidJoYZ0IhoP1RDMiggRvMHeGOIMdaNaJtqVEMuqtN8y6TpAQjGPcBGu4pQt0sf_dpvg5-1zUJs5p55IVptAyyVqGd9TVnrIp5px8UNs0fOj0rTCo3wzqPwP9AUH5TtA</recordid><startdate>198212</startdate><enddate>198212</enddate><creator>Ferligoj, Anuška</creator><creator>Batagelj, Vladimir</creator><general>Psychometric Society, etc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>GHXMH</scope><scope>GPCCI</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>198212</creationdate><title>Clustering with Relational Constraint</title><author>Ferligoj, Anuška ; Batagelj, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-a7cd7fb60ce2a527f80eb16db2db1d0a5974432853eceb5cd972ffbd56bfcb6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferligoj, Anuška</creatorcontrib><creatorcontrib>Batagelj, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 09</collection><collection>Periodicals Index Online Segment 10</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferligoj, Anuška</au><au>Batagelj, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering with Relational Constraint</atitle><jtitle>Psychometrika</jtitle><date>1982-12</date><risdate>1982</risdate><volume>47</volume><issue>4</issue><spage>413</spage><epage>426</epage><pages>413-426</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optimization procedure, CLUDIA. To illustrate these procedures, clusterings of the European countries are given based on the developmental indicators where the relation is determined by the geographical neighbourhoods of countries.</abstract><cop>Colorado Springs, Colo</cop><pub>Psychometric Society, etc</pub><doi>10.1007/BF02293706</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 1982-12, Vol.47 (4), p.413-426
issn 0033-3123
1860-0980
language eng
recordid cdi_proquest_journals_1304585451
source Periodicals Index Online; SpringerLink Journals - AutoHoldings
title Clustering with Relational Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20with%20Relational%20Constraint&rft.jtitle=Psychometrika&rft.au=Ferligoj,%20Anu%C5%A1ka&rft.date=1982-12&rft.volume=47&rft.issue=4&rft.spage=413&rft.epage=426&rft.pages=413-426&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/BF02293706&rft_dat=%3Cproquest_cross%3E1304585451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304585451&rft_id=info:pmid/&rfr_iscdi=true