Biochemical basis of insect resistance in Vigna unguiculata

The bruchid beetle Callosobruchus maculatus (F.) causes extensive damage to seeds of the cowpea, Vigna unguiculata (L.) (Walp.), when this important tropical foodstuff is stored. A variety of cowpea resistant to attack by this pest has been described. In the present work seeds of a number of cowpea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 1979-10, Vol.30 (10), p.948-958
Hauptverfasser: Gatehouse, A.M.R, Gatehouse, J.A, Dobie, P, Kilminster, A.M, Boulter, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bruchid beetle Callosobruchus maculatus (F.) causes extensive damage to seeds of the cowpea, Vigna unguiculata (L.) (Walp.), when this important tropical foodstuff is stored. A variety of cowpea resistant to attack by this pest has been described. In the present work seeds of a number of cowpea varieties, including the resistant one, were tested for the presence of a physical resistance to C. maculatus, in terms of repulsion of oviposition or of failure of larvae to enter the seeds. No evidence to suggest the presence of a physical resistance was found. When seeds of cowpea varieties were tested for the presence of various antimetabolic secondary compounds, only inhibitory activity against trypsin and, to a much lesser extent, chymotrypsin, could be detected. The resistant variety of cowpea contained a significantly higher level of inhibitors, about twice as much as any other variety. A proteinase inhibitor active against trypsin was purified from cowpea varieties by affinity chromatography on trypsin‐Sepharose. The purified inhibitor was shown to inhibit chyraotrypsin also, in such proportions as to account for chymotrypsin inhibition by seed extracts. The inhibitor was shown to consist of a number of isoinhibitors by gel electrophoresis and isoelectric focusing, but no qualitative differences in the inhibitor between varieties could be detected. The antimetabolic nature of the cowpea trypsin inhibitor was confirmed by insect feeding trials in which various protein fractions were added to a basic meal and the effect on larval survival noted. The albumin proteins of cowpea (containing the trypsin inhibitors) at a level of 10% were toxic to larvae of C. maculatus whereas the globulin fractions were not. Further, if cowpea trypsin inhibitor was removed from the albumin proteins they ceased to be toxic. When purified cowpea trypsin inhibitor was added to the basic meal it was shown that a level slightly less than that found in the resistant variety of cowpea caused complete mortality of larvae, whereas lower levels had lesser or no effect. It is concluded that this example of insect resistance in the cowpea is due to an elevated level of trypsin inhibitor.
ISSN:0022-5142
1097-0010
DOI:10.1002/jsfa.2740301003