Information Theory and the Optimal Detection Search

This paper establishes a connection between information theory and search theory. In the case of an exponential detection function we show that the search that maximizes the probability of detection also minimizes the information content of the posterior distribution. We also show that if the search...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 1977-03, Vol.25 (2), p.304-314
1. Verfasser: Barker, William H., II
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 2
container_start_page 304
container_title Operations research
container_volume 25
creator Barker, William H., II
description This paper establishes a connection between information theory and search theory. In the case of an exponential detection function we show that the search that maximizes the probability of detection also minimizes the information content of the posterior distribution. We also show that if the search plan that maximizes the probability of detection also minimizes the information content of the posterior distribution, then the detection function is exponential. We prove our results in both the continuous and discrete cases.
doi_str_mv 10.1287/opre.25.2.304
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1303084553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>169833</jstor_id><sourcerecordid>169833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-2344131458a73a4dba923c8037ebeaf9f07c6912d2881498f628217182298f693</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgCs7p0ZOXouDJ1uRN0iZH2fwYDHZwgreQdant2JqadMj-e9NV2Uk8hfD-8oT3QeiS4ISAyO5t40wCPIGEYnaEBoRDGnOW0mM0wJjimKbs_RSdeb_CGEue8gGik7qwbqPbytbRvDTW7SJdL6O2NNGsaauNXkdj05p8D16Ndnl5jk4Kvfbm4uccorenx_noJZ7Oniejh2mc00y0MVDGCCWMC51RzZYLLYHmAtPMLIwuZIGzPJUEliAEYVIUKQggGREA3UXSIbrucxtnP7fGt2plt64OXyogknAGnAd08xciNCwtWEBBxb3KnfXemUI1Luzmdopg1ZWnuvIUcAUqlBf8Ve9XvrXugFMpaJd210-rfXn-37DbnpfVR_lVhdHvu875A_wGCWKEyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303084553</pqid></control><display><type>article</type><title>Information Theory and the Optimal Detection Search</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>Periodicals Index Online</source><source>EBSCOhost Business Source Complete</source><creator>Barker, William H., II</creator><creatorcontrib>Barker, William H., II</creatorcontrib><description>This paper establishes a connection between information theory and search theory. In the case of an exponential detection function we show that the search that maximizes the probability of detection also minimizes the information content of the posterior distribution. We also show that if the search plan that maximizes the probability of detection also minimizes the information content of the posterior distribution, then the detection function is exponential. We prove our results in both the continuous and discrete cases.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.25.2.304</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Baltimore, Md: INFORMS</publisher><subject>Continuous functions ; Entropy ; Information ; Information content ; Information theory ; Logical givens ; Mathematical functions ; Mathematical theorems ; Operations research ; Probability distributions ; Searches ; Studies ; Theory</subject><ispartof>Operations research, 1977-03, Vol.25 (2), p.304-314</ispartof><rights>Copyright 1977 The Operations Research Society of America</rights><rights>Copyright Institute for Operations Research and the Management Sciences MAR./APR. 1977</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-2344131458a73a4dba923c8037ebeaf9f07c6912d2881498f628217182298f693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/169833$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.25.2.304$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27846,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>Barker, William H., II</creatorcontrib><title>Information Theory and the Optimal Detection Search</title><title>Operations research</title><description>This paper establishes a connection between information theory and search theory. In the case of an exponential detection function we show that the search that maximizes the probability of detection also minimizes the information content of the posterior distribution. We also show that if the search plan that maximizes the probability of detection also minimizes the information content of the posterior distribution, then the detection function is exponential. We prove our results in both the continuous and discrete cases.</description><subject>Continuous functions</subject><subject>Entropy</subject><subject>Information</subject><subject>Information content</subject><subject>Information theory</subject><subject>Logical givens</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Operations research</subject><subject>Probability distributions</subject><subject>Searches</subject><subject>Studies</subject><subject>Theory</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqF0M1LwzAYBvAgCs7p0ZOXouDJ1uRN0iZH2fwYDHZwgreQdant2JqadMj-e9NV2Uk8hfD-8oT3QeiS4ISAyO5t40wCPIGEYnaEBoRDGnOW0mM0wJjimKbs_RSdeb_CGEue8gGik7qwbqPbytbRvDTW7SJdL6O2NNGsaauNXkdj05p8D16Ndnl5jk4Kvfbm4uccorenx_noJZ7Oniejh2mc00y0MVDGCCWMC51RzZYLLYHmAtPMLIwuZIGzPJUEliAEYVIUKQggGREA3UXSIbrucxtnP7fGt2plt64OXyogknAGnAd08xciNCwtWEBBxb3KnfXemUI1Luzmdopg1ZWnuvIUcAUqlBf8Ve9XvrXugFMpaJd210-rfXn-37DbnpfVR_lVhdHvu875A_wGCWKEyw</recordid><startdate>19770301</startdate><enddate>19770301</enddate><creator>Barker, William H., II</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>JQ2</scope><scope>K9.</scope></search><sort><creationdate>19770301</creationdate><title>Information Theory and the Optimal Detection Search</title><author>Barker, William H., II</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-2344131458a73a4dba923c8037ebeaf9f07c6912d2881498f628217182298f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Continuous functions</topic><topic>Entropy</topic><topic>Information</topic><topic>Information content</topic><topic>Information theory</topic><topic>Logical givens</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Operations research</topic><topic>Probability distributions</topic><topic>Searches</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barker, William H., II</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barker, William H., II</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Theory and the Optimal Detection Search</atitle><jtitle>Operations research</jtitle><date>1977-03-01</date><risdate>1977</risdate><volume>25</volume><issue>2</issue><spage>304</spage><epage>314</epage><pages>304-314</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>This paper establishes a connection between information theory and search theory. In the case of an exponential detection function we show that the search that maximizes the probability of detection also minimizes the information content of the posterior distribution. We also show that if the search plan that maximizes the probability of detection also minimizes the information content of the posterior distribution, then the detection function is exponential. We prove our results in both the continuous and discrete cases.</abstract><cop>Baltimore, Md</cop><pub>INFORMS</pub><doi>10.1287/opre.25.2.304</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 1977-03, Vol.25 (2), p.304-314
issn 0030-364X
1526-5463
language eng
recordid cdi_proquest_journals_1303084553
source Jstor Complete Legacy; INFORMS PubsOnLine; Periodicals Index Online; EBSCOhost Business Source Complete
subjects Continuous functions
Entropy
Information
Information content
Information theory
Logical givens
Mathematical functions
Mathematical theorems
Operations research
Probability distributions
Searches
Studies
Theory
title Information Theory and the Optimal Detection Search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Theory%20and%20the%20Optimal%20Detection%20Search&rft.jtitle=Operations%20research&rft.au=Barker,%20William%20H.,%20II&rft.date=1977-03-01&rft.volume=25&rft.issue=2&rft.spage=304&rft.epage=314&rft.pages=304-314&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.25.2.304&rft_dat=%3Cjstor_proqu%3E169833%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1303084553&rft_id=info:pmid/&rft_jstor_id=169833&rfr_iscdi=true