Information Theory and the Optimal Detection Search
This paper establishes a connection between information theory and search theory. In the case of an exponential detection function we show that the search that maximizes the probability of detection also minimizes the information content of the posterior distribution. We also show that if the search...
Gespeichert in:
Veröffentlicht in: | Operations research 1977-03, Vol.25 (2), p.304-314 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 2 |
container_start_page | 304 |
container_title | Operations research |
container_volume | 25 |
creator | Barker, William H., II |
description | This paper establishes a connection between information theory and search theory. In the case of an exponential detection function we show that the search that maximizes the probability of detection also minimizes the information content of the posterior distribution. We also show that if the search plan that maximizes the probability of detection also minimizes the information content of the posterior distribution, then the detection function is exponential. We prove our results in both the continuous and discrete cases. |
doi_str_mv | 10.1287/opre.25.2.304 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1303084553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>169833</jstor_id><sourcerecordid>169833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-2344131458a73a4dba923c8037ebeaf9f07c6912d2881498f628217182298f693</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgCs7p0ZOXouDJ1uRN0iZH2fwYDHZwgreQdant2JqadMj-e9NV2Uk8hfD-8oT3QeiS4ISAyO5t40wCPIGEYnaEBoRDGnOW0mM0wJjimKbs_RSdeb_CGEue8gGik7qwbqPbytbRvDTW7SJdL6O2NNGsaauNXkdj05p8D16Ndnl5jk4Kvfbm4uccorenx_noJZ7Oniejh2mc00y0MVDGCCWMC51RzZYLLYHmAtPMLIwuZIGzPJUEliAEYVIUKQggGREA3UXSIbrucxtnP7fGt2plt64OXyogknAGnAd08xciNCwtWEBBxb3KnfXemUI1Luzmdopg1ZWnuvIUcAUqlBf8Ve9XvrXugFMpaJd210-rfXn-37DbnpfVR_lVhdHvu875A_wGCWKEyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303084553</pqid></control><display><type>article</type><title>Information Theory and the Optimal Detection Search</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>Periodicals Index Online</source><source>EBSCOhost Business Source Complete</source><creator>Barker, William H., II</creator><creatorcontrib>Barker, William H., II</creatorcontrib><description>This paper establishes a connection between information theory and search theory. In the case of an exponential detection function we show that the search that maximizes the probability of detection also minimizes the information content of the posterior distribution. We also show that if the search plan that maximizes the probability of detection also minimizes the information content of the posterior distribution, then the detection function is exponential. We prove our results in both the continuous and discrete cases.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.25.2.304</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Baltimore, Md: INFORMS</publisher><subject>Continuous functions ; Entropy ; Information ; Information content ; Information theory ; Logical givens ; Mathematical functions ; Mathematical theorems ; Operations research ; Probability distributions ; Searches ; Studies ; Theory</subject><ispartof>Operations research, 1977-03, Vol.25 (2), p.304-314</ispartof><rights>Copyright 1977 The Operations Research Society of America</rights><rights>Copyright Institute for Operations Research and the Management Sciences MAR./APR. 1977</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-2344131458a73a4dba923c8037ebeaf9f07c6912d2881498f628217182298f693</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/169833$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.25.2.304$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27846,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>Barker, William H., II</creatorcontrib><title>Information Theory and the Optimal Detection Search</title><title>Operations research</title><description>This paper establishes a connection between information theory and search theory. In the case of an exponential detection function we show that the search that maximizes the probability of detection also minimizes the information content of the posterior distribution. We also show that if the search plan that maximizes the probability of detection also minimizes the information content of the posterior distribution, then the detection function is exponential. We prove our results in both the continuous and discrete cases.</description><subject>Continuous functions</subject><subject>Entropy</subject><subject>Information</subject><subject>Information content</subject><subject>Information theory</subject><subject>Logical givens</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Operations research</subject><subject>Probability distributions</subject><subject>Searches</subject><subject>Studies</subject><subject>Theory</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqF0M1LwzAYBvAgCs7p0ZOXouDJ1uRN0iZH2fwYDHZwgreQdant2JqadMj-e9NV2Uk8hfD-8oT3QeiS4ISAyO5t40wCPIGEYnaEBoRDGnOW0mM0wJjimKbs_RSdeb_CGEue8gGik7qwbqPbytbRvDTW7SJdL6O2NNGsaauNXkdj05p8D16Ndnl5jk4Kvfbm4uccorenx_noJZ7Oniejh2mc00y0MVDGCCWMC51RzZYLLYHmAtPMLIwuZIGzPJUEliAEYVIUKQggGREA3UXSIbrucxtnP7fGt2plt64OXyogknAGnAd08xciNCwtWEBBxb3KnfXemUI1Luzmdopg1ZWnuvIUcAUqlBf8Ve9XvrXugFMpaJd210-rfXn-37DbnpfVR_lVhdHvu875A_wGCWKEyw</recordid><startdate>19770301</startdate><enddate>19770301</enddate><creator>Barker, William H., II</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>JQ2</scope><scope>K9.</scope></search><sort><creationdate>19770301</creationdate><title>Information Theory and the Optimal Detection Search</title><author>Barker, William H., II</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-2344131458a73a4dba923c8037ebeaf9f07c6912d2881498f628217182298f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Continuous functions</topic><topic>Entropy</topic><topic>Information</topic><topic>Information content</topic><topic>Information theory</topic><topic>Logical givens</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Operations research</topic><topic>Probability distributions</topic><topic>Searches</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barker, William H., II</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barker, William H., II</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information Theory and the Optimal Detection Search</atitle><jtitle>Operations research</jtitle><date>1977-03-01</date><risdate>1977</risdate><volume>25</volume><issue>2</issue><spage>304</spage><epage>314</epage><pages>304-314</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>This paper establishes a connection between information theory and search theory. In the case of an exponential detection function we show that the search that maximizes the probability of detection also minimizes the information content of the posterior distribution. We also show that if the search plan that maximizes the probability of detection also minimizes the information content of the posterior distribution, then the detection function is exponential. We prove our results in both the continuous and discrete cases.</abstract><cop>Baltimore, Md</cop><pub>INFORMS</pub><doi>10.1287/opre.25.2.304</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 1977-03, Vol.25 (2), p.304-314 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_proquest_journals_1303084553 |
source | Jstor Complete Legacy; INFORMS PubsOnLine; Periodicals Index Online; EBSCOhost Business Source Complete |
subjects | Continuous functions Entropy Information Information content Information theory Logical givens Mathematical functions Mathematical theorems Operations research Probability distributions Searches Studies Theory |
title | Information Theory and the Optimal Detection Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20Theory%20and%20the%20Optimal%20Detection%20Search&rft.jtitle=Operations%20research&rft.au=Barker,%20William%20H.,%20II&rft.date=1977-03-01&rft.volume=25&rft.issue=2&rft.spage=304&rft.epage=314&rft.pages=304-314&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.25.2.304&rft_dat=%3Cjstor_proqu%3E169833%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1303084553&rft_id=info:pmid/&rft_jstor_id=169833&rfr_iscdi=true |