Geometric Programming: Estimation of Lagrange Multipliers

This paper presents a method for estimating Lagrange multipliers for generalized Geometric Programming. The Lagrange multipliers of a linearized problem serve as estimates of the generalized Geometric Programming multipliers.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research 1985-01, Vol.33 (1), p.85-93
Hauptverfasser: Rijckaert, M. J, Walraven, E. J. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 1
container_start_page 85
container_title Operations research
container_volume 33
creator Rijckaert, M. J
Walraven, E. J. C
description This paper presents a method for estimating Lagrange multipliers for generalized Geometric Programming. The Lagrange multipliers of a linearized problem serve as estimates of the generalized Geometric Programming multipliers.
doi_str_mv 10.1287/opre.33.1.85
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1303078991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>170869</jstor_id><sourcerecordid>170869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-1597071633b427c5e3a7beb1ae7690682afbb8165e49cd765e1dcedc2ad09e523</originalsourceid><addsrcrecordid>eNqF0L1LxDAYBvAgCp6nm5tLUXTR1qRpksZNjvMUTnRQcAtpm_ZytM2ZtIj_vSn1AwRxeofn974JDwCHCEYoTtml2VgVYRyhKCVbYIJITEOSULwNJhBiGGKavOyCPefWEEJOKJkAvlCmUZ3VefBoTWVl0-i2ugrmrtON7LRpA1MGS-mTtlLBfV93elNrZd0-2Cll7dTB55yC55v50-w2XD4s7mbXyzBPMO1CRDiDDFGMsyRmOVFYskxlSCpGOaRpLMssSxElKuF5wfxERa6KPJYF5IrEeArOxrsba1575TrRaJerupatMr0TcUI45gh7ePwLrk1vW_83ESOOKCUJ9-jkL4Sw74il3N-agotR5dY4Z1UpNtbXYd8FgmKoWgxVC4wFEinx_Gjka9cZ-2MZTOnw5PmY6rY0tnH_3Tod9UpXqzftk6-1gblv9wGFYZXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303078991</pqid></control><display><type>article</type><title>Geometric Programming: Estimation of Lagrange Multipliers</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>Periodicals Index Online</source><source>EBSCOhost Business Source Complete</source><creator>Rijckaert, M. J ; Walraven, E. J. C</creator><creatorcontrib>Rijckaert, M. J ; Walraven, E. J. C</creatorcontrib><description>This paper presents a method for estimating Lagrange multipliers for generalized Geometric Programming. The Lagrange multipliers of a linearized problem serve as estimates of the generalized Geometric Programming multipliers.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.33.1.85</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Baltimore, Md: INFORMS</publisher><subject>624 estimation of Lagrange multipliers ; 642 geometric programming ; Algorithms ; Condensation ; Estimation methods ; Geometric programming ; Lagrange multipliers ; Linear programming ; Mathematical models ; Mathematical procedures ; Mathematics ; Minimization ; Multiplier ; Operations research</subject><ispartof>Operations research, 1985-01, Vol.33 (1), p.85-93</ispartof><rights>Copyright 1985 The Operations Research Society of America</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jan/Feb 1985</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-1597071633b427c5e3a7beb1ae7690682afbb8165e49cd765e1dcedc2ad09e523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/170869$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.33.1.85$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27846,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>Rijckaert, M. J</creatorcontrib><creatorcontrib>Walraven, E. J. C</creatorcontrib><title>Geometric Programming: Estimation of Lagrange Multipliers</title><title>Operations research</title><description>This paper presents a method for estimating Lagrange multipliers for generalized Geometric Programming. The Lagrange multipliers of a linearized problem serve as estimates of the generalized Geometric Programming multipliers.</description><subject>624 estimation of Lagrange multipliers</subject><subject>642 geometric programming</subject><subject>Algorithms</subject><subject>Condensation</subject><subject>Estimation methods</subject><subject>Geometric programming</subject><subject>Lagrange multipliers</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Mathematical procedures</subject><subject>Mathematics</subject><subject>Minimization</subject><subject>Multiplier</subject><subject>Operations research</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqF0L1LxDAYBvAgCp6nm5tLUXTR1qRpksZNjvMUTnRQcAtpm_ZytM2ZtIj_vSn1AwRxeofn974JDwCHCEYoTtml2VgVYRyhKCVbYIJITEOSULwNJhBiGGKavOyCPefWEEJOKJkAvlCmUZ3VefBoTWVl0-i2ugrmrtON7LRpA1MGS-mTtlLBfV93elNrZd0-2Cll7dTB55yC55v50-w2XD4s7mbXyzBPMO1CRDiDDFGMsyRmOVFYskxlSCpGOaRpLMssSxElKuF5wfxERa6KPJYF5IrEeArOxrsba1575TrRaJerupatMr0TcUI45gh7ePwLrk1vW_83ESOOKCUJ9-jkL4Sw74il3N-agotR5dY4Z1UpNtbXYd8FgmKoWgxVC4wFEinx_Gjka9cZ-2MZTOnw5PmY6rY0tnH_3Tod9UpXqzftk6-1gblv9wGFYZXE</recordid><startdate>19850101</startdate><enddate>19850101</enddate><creator>Rijckaert, M. J</creator><creator>Walraven, E. J. C</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>JQ2</scope><scope>K9.</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19850101</creationdate><title>Geometric Programming: Estimation of Lagrange Multipliers</title><author>Rijckaert, M. J ; Walraven, E. J. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-1597071633b427c5e3a7beb1ae7690682afbb8165e49cd765e1dcedc2ad09e523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>624 estimation of Lagrange multipliers</topic><topic>642 geometric programming</topic><topic>Algorithms</topic><topic>Condensation</topic><topic>Estimation methods</topic><topic>Geometric programming</topic><topic>Lagrange multipliers</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Mathematical procedures</topic><topic>Mathematics</topic><topic>Minimization</topic><topic>Multiplier</topic><topic>Operations research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rijckaert, M. J</creatorcontrib><creatorcontrib>Walraven, E. J. C</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rijckaert, M. J</au><au>Walraven, E. J. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Programming: Estimation of Lagrange Multipliers</atitle><jtitle>Operations research</jtitle><date>1985-01-01</date><risdate>1985</risdate><volume>33</volume><issue>1</issue><spage>85</spage><epage>93</epage><pages>85-93</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>This paper presents a method for estimating Lagrange multipliers for generalized Geometric Programming. The Lagrange multipliers of a linearized problem serve as estimates of the generalized Geometric Programming multipliers.</abstract><cop>Baltimore, Md</cop><pub>INFORMS</pub><doi>10.1287/opre.33.1.85</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-364X
ispartof Operations research, 1985-01, Vol.33 (1), p.85-93
issn 0030-364X
1526-5463
language eng
recordid cdi_proquest_journals_1303078991
source Jstor Complete Legacy; INFORMS PubsOnLine; Periodicals Index Online; EBSCOhost Business Source Complete
subjects 624 estimation of Lagrange multipliers
642 geometric programming
Algorithms
Condensation
Estimation methods
Geometric programming
Lagrange multipliers
Linear programming
Mathematical models
Mathematical procedures
Mathematics
Minimization
Multiplier
Operations research
title Geometric Programming: Estimation of Lagrange Multipliers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Programming:%20Estimation%20of%20Lagrange%20Multipliers&rft.jtitle=Operations%20research&rft.au=Rijckaert,%20M.%20J&rft.date=1985-01-01&rft.volume=33&rft.issue=1&rft.spage=85&rft.epage=93&rft.pages=85-93&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.33.1.85&rft_dat=%3Cjstor_proqu%3E170869%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1303078991&rft_id=info:pmid/&rft_jstor_id=170869&rfr_iscdi=true