Geometric Programming: Estimation of Lagrange Multipliers
This paper presents a method for estimating Lagrange multipliers for generalized Geometric Programming. The Lagrange multipliers of a linearized problem serve as estimates of the generalized Geometric Programming multipliers.
Gespeichert in:
Veröffentlicht in: | Operations research 1985-01, Vol.33 (1), p.85-93 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | 1 |
container_start_page | 85 |
container_title | Operations research |
container_volume | 33 |
creator | Rijckaert, M. J Walraven, E. J. C |
description | This paper presents a method for estimating Lagrange multipliers for generalized Geometric Programming. The Lagrange multipliers of a linearized problem serve as estimates of the generalized Geometric Programming multipliers. |
doi_str_mv | 10.1287/opre.33.1.85 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1303078991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>170869</jstor_id><sourcerecordid>170869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-1597071633b427c5e3a7beb1ae7690682afbb8165e49cd765e1dcedc2ad09e523</originalsourceid><addsrcrecordid>eNqF0L1LxDAYBvAgCp6nm5tLUXTR1qRpksZNjvMUTnRQcAtpm_ZytM2ZtIj_vSn1AwRxeofn974JDwCHCEYoTtml2VgVYRyhKCVbYIJITEOSULwNJhBiGGKavOyCPefWEEJOKJkAvlCmUZ3VefBoTWVl0-i2ugrmrtON7LRpA1MGS-mTtlLBfV93elNrZd0-2Cll7dTB55yC55v50-w2XD4s7mbXyzBPMO1CRDiDDFGMsyRmOVFYskxlSCpGOaRpLMssSxElKuF5wfxERa6KPJYF5IrEeArOxrsba1575TrRaJerupatMr0TcUI45gh7ePwLrk1vW_83ESOOKCUJ9-jkL4Sw74il3N-agotR5dY4Z1UpNtbXYd8FgmKoWgxVC4wFEinx_Gjka9cZ-2MZTOnw5PmY6rY0tnH_3Tod9UpXqzftk6-1gblv9wGFYZXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303078991</pqid></control><display><type>article</type><title>Geometric Programming: Estimation of Lagrange Multipliers</title><source>Jstor Complete Legacy</source><source>INFORMS PubsOnLine</source><source>Periodicals Index Online</source><source>EBSCOhost Business Source Complete</source><creator>Rijckaert, M. J ; Walraven, E. J. C</creator><creatorcontrib>Rijckaert, M. J ; Walraven, E. J. C</creatorcontrib><description>This paper presents a method for estimating Lagrange multipliers for generalized Geometric Programming. The Lagrange multipliers of a linearized problem serve as estimates of the generalized Geometric Programming multipliers.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.33.1.85</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Baltimore, Md: INFORMS</publisher><subject>624 estimation of Lagrange multipliers ; 642 geometric programming ; Algorithms ; Condensation ; Estimation methods ; Geometric programming ; Lagrange multipliers ; Linear programming ; Mathematical models ; Mathematical procedures ; Mathematics ; Minimization ; Multiplier ; Operations research</subject><ispartof>Operations research, 1985-01, Vol.33 (1), p.85-93</ispartof><rights>Copyright 1985 The Operations Research Society of America</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jan/Feb 1985</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-1597071633b427c5e3a7beb1ae7690682afbb8165e49cd765e1dcedc2ad09e523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/170869$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.33.1.85$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27846,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>Rijckaert, M. J</creatorcontrib><creatorcontrib>Walraven, E. J. C</creatorcontrib><title>Geometric Programming: Estimation of Lagrange Multipliers</title><title>Operations research</title><description>This paper presents a method for estimating Lagrange multipliers for generalized Geometric Programming. The Lagrange multipliers of a linearized problem serve as estimates of the generalized Geometric Programming multipliers.</description><subject>624 estimation of Lagrange multipliers</subject><subject>642 geometric programming</subject><subject>Algorithms</subject><subject>Condensation</subject><subject>Estimation methods</subject><subject>Geometric programming</subject><subject>Lagrange multipliers</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Mathematical procedures</subject><subject>Mathematics</subject><subject>Minimization</subject><subject>Multiplier</subject><subject>Operations research</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqF0L1LxDAYBvAgCp6nm5tLUXTR1qRpksZNjvMUTnRQcAtpm_ZytM2ZtIj_vSn1AwRxeofn974JDwCHCEYoTtml2VgVYRyhKCVbYIJITEOSULwNJhBiGGKavOyCPefWEEJOKJkAvlCmUZ3VefBoTWVl0-i2ugrmrtON7LRpA1MGS-mTtlLBfV93elNrZd0-2Cll7dTB55yC55v50-w2XD4s7mbXyzBPMO1CRDiDDFGMsyRmOVFYskxlSCpGOaRpLMssSxElKuF5wfxERa6KPJYF5IrEeArOxrsba1575TrRaJerupatMr0TcUI45gh7ePwLrk1vW_83ESOOKCUJ9-jkL4Sw74il3N-agotR5dY4Z1UpNtbXYd8FgmKoWgxVC4wFEinx_Gjka9cZ-2MZTOnw5PmY6rY0tnH_3Tod9UpXqzftk6-1gblv9wGFYZXE</recordid><startdate>19850101</startdate><enddate>19850101</enddate><creator>Rijckaert, M. J</creator><creator>Walraven, E. J. C</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>JQ2</scope><scope>K9.</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19850101</creationdate><title>Geometric Programming: Estimation of Lagrange Multipliers</title><author>Rijckaert, M. J ; Walraven, E. J. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-1597071633b427c5e3a7beb1ae7690682afbb8165e49cd765e1dcedc2ad09e523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>624 estimation of Lagrange multipliers</topic><topic>642 geometric programming</topic><topic>Algorithms</topic><topic>Condensation</topic><topic>Estimation methods</topic><topic>Geometric programming</topic><topic>Lagrange multipliers</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Mathematical procedures</topic><topic>Mathematics</topic><topic>Minimization</topic><topic>Multiplier</topic><topic>Operations research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rijckaert, M. J</creatorcontrib><creatorcontrib>Walraven, E. J. C</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rijckaert, M. J</au><au>Walraven, E. J. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Programming: Estimation of Lagrange Multipliers</atitle><jtitle>Operations research</jtitle><date>1985-01-01</date><risdate>1985</risdate><volume>33</volume><issue>1</issue><spage>85</spage><epage>93</epage><pages>85-93</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>This paper presents a method for estimating Lagrange multipliers for generalized Geometric Programming. The Lagrange multipliers of a linearized problem serve as estimates of the generalized Geometric Programming multipliers.</abstract><cop>Baltimore, Md</cop><pub>INFORMS</pub><doi>10.1287/opre.33.1.85</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 1985-01, Vol.33 (1), p.85-93 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_proquest_journals_1303078991 |
source | Jstor Complete Legacy; INFORMS PubsOnLine; Periodicals Index Online; EBSCOhost Business Source Complete |
subjects | 624 estimation of Lagrange multipliers 642 geometric programming Algorithms Condensation Estimation methods Geometric programming Lagrange multipliers Linear programming Mathematical models Mathematical procedures Mathematics Minimization Multiplier Operations research |
title | Geometric Programming: Estimation of Lagrange Multipliers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Programming:%20Estimation%20of%20Lagrange%20Multipliers&rft.jtitle=Operations%20research&rft.au=Rijckaert,%20M.%20J&rft.date=1985-01-01&rft.volume=33&rft.issue=1&rft.spage=85&rft.epage=93&rft.pages=85-93&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.33.1.85&rft_dat=%3Cjstor_proqu%3E170869%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1303078991&rft_id=info:pmid/&rft_jstor_id=170869&rfr_iscdi=true |