Generalized Linear Models with Varying Dispersion

Generalized linear models are further generalized to include a linear predictor for the dispersion as well as for the mean. It is shown how the convenient structure of generalized linear models can be carried over to this more general setting by considering the mean and dispersion structure separate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1989, Vol.51 (1), p.47-60
1. Verfasser: Smyth, Gordon K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 47
container_title Journal of the Royal Statistical Society. Series B, Methodological
container_volume 51
creator Smyth, Gordon K.
description Generalized linear models are further generalized to include a linear predictor for the dispersion as well as for the mean. It is shown how the convenient structure of generalized linear models can be carried over to this more general setting by considering the mean and dispersion structure separately. Mean and dispersion submodels are formulated for this, the dependent variable for the dispersion submodel being the deviance components of the mean submodel. The fact that both submodels are essentially generalized linear models themselves is used to derive simple expressions for the likelihood equations and for asymptotic tests. Estimation algorithms are proposed which have good convergence properties. The results apply mainly to the normal, inverse Gaussian and gamma distributions but can be extended to discrete distributions by using quasi-likelihoods. The methods developed are applied to a well-known data set.
doi_str_mv 10.1111/j.2517-6161.1989.tb01747.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1302991352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2345840</jstor_id><sourcerecordid>2345840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3617-4d7034d95101b8922c58d02cab55f616c692c20e7f89d17ba0d9f6255f8b4e563</originalsourceid><addsrcrecordid>eNqVkF9LwzAUxYMoOKffwIei-Niav23j25w6hYng1NeQpqmm1LYmHdv89KZ2zGfzcgP33N85HADOEIyQf5dlhBlKwhjFKEI85VGXQZTQJFrvgdFutQ9GEBIWckzjQ3DkXAkhRISSEUAzXWsrK_Ot82Buai1t8NjkunLBynQfwZu0G1O_BzfGtdo609TH4KCQldMn2zkGr3e3L9P7cP40e5hO5qEisfeleQIJzTlDEGUpx1ixNIdYyYyxwodSMccKQ50UKc9RkkmY8yLGfplmVLOYjMH5wG1t87XUrhNls7S1txSIQMw5Igx71dWgUrZxzupCtNZ8-tACQdFXJErR9yD6HkRfkdhWJNb--GJrIZ2SVWFlrYz7I3DMEx_d6yaDbmUqvfmHg3heLK5__55xOjBK1zV2x8CEspRC8gPe8oNF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1302991352</pqid></control><display><type>article</type><title>Generalized Linear Models with Varying Dispersion</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Smyth, Gordon K.</creator><creatorcontrib>Smyth, Gordon K.</creatorcontrib><description>Generalized linear models are further generalized to include a linear predictor for the dispersion as well as for the mean. It is shown how the convenient structure of generalized linear models can be carried over to this more general setting by considering the mean and dispersion structure separately. Mean and dispersion submodels are formulated for this, the dependent variable for the dispersion submodel being the deviance components of the mean submodel. The fact that both submodels are essentially generalized linear models themselves is used to derive simple expressions for the likelihood equations and for asymptotic tests. Estimation algorithms are proposed which have good convergence properties. The results apply mainly to the normal, inverse Gaussian and gamma distributions but can be extended to discrete distributions by using quasi-likelihoods. The methods developed are applied to a well-known data set.</description><identifier>ISSN: 0035-9246</identifier><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 2517-6161</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.2517-6161.1989.tb01747.x</identifier><identifier>CODEN: JSTBAJ</identifier><language>eng</language><publisher>London: Royal Statistical Society</publisher><subject>deviance components ; Exact sciences and technology ; Gaussian distributions ; Generalized linear model ; Induced substructures ; inverse gaussian and gamma distributions ; iterative algorithms ; Linear inference, regression ; Linear models ; Linear regression ; Mathematical functions ; Mathematics ; Maximum likelihood estimation ; normal ; Parametric models ; Probability and statistics ; quasi‐likelihood ; Sciences and techniques of general use ; Statistical variance ; Statistics ; Variance</subject><ispartof>Journal of the Royal Statistical Society. Series B, Methodological, 1989, Vol.51 (1), p.47-60</ispartof><rights>Copyright 1989 Royal Statistical Society</rights><rights>1989 Royal Statistical Society</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3617-4d7034d95101b8922c58d02cab55f616c692c20e7f89d17ba0d9f6255f8b4e563</citedby><cites>FETCH-LOGICAL-c3617-4d7034d95101b8922c58d02cab55f616c692c20e7f89d17ba0d9f6255f8b4e563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2345840$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2345840$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,782,786,805,834,4028,27878,27932,27933,27934,58026,58030,58259,58263</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19297892$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Smyth, Gordon K.</creatorcontrib><title>Generalized Linear Models with Varying Dispersion</title><title>Journal of the Royal Statistical Society. Series B, Methodological</title><description>Generalized linear models are further generalized to include a linear predictor for the dispersion as well as for the mean. It is shown how the convenient structure of generalized linear models can be carried over to this more general setting by considering the mean and dispersion structure separately. Mean and dispersion submodels are formulated for this, the dependent variable for the dispersion submodel being the deviance components of the mean submodel. The fact that both submodels are essentially generalized linear models themselves is used to derive simple expressions for the likelihood equations and for asymptotic tests. Estimation algorithms are proposed which have good convergence properties. The results apply mainly to the normal, inverse Gaussian and gamma distributions but can be extended to discrete distributions by using quasi-likelihoods. The methods developed are applied to a well-known data set.</description><subject>deviance components</subject><subject>Exact sciences and technology</subject><subject>Gaussian distributions</subject><subject>Generalized linear model</subject><subject>Induced substructures</subject><subject>inverse gaussian and gamma distributions</subject><subject>iterative algorithms</subject><subject>Linear inference, regression</subject><subject>Linear models</subject><subject>Linear regression</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>normal</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>quasi‐likelihood</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Variance</subject><issn>0035-9246</issn><issn>1369-7412</issn><issn>2517-6161</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkF9LwzAUxYMoOKffwIei-Niav23j25w6hYng1NeQpqmm1LYmHdv89KZ2zGfzcgP33N85HADOEIyQf5dlhBlKwhjFKEI85VGXQZTQJFrvgdFutQ9GEBIWckzjQ3DkXAkhRISSEUAzXWsrK_Ot82Buai1t8NjkunLBynQfwZu0G1O_BzfGtdo609TH4KCQldMn2zkGr3e3L9P7cP40e5hO5qEisfeleQIJzTlDEGUpx1ixNIdYyYyxwodSMccKQ50UKc9RkkmY8yLGfplmVLOYjMH5wG1t87XUrhNls7S1txSIQMw5Igx71dWgUrZxzupCtNZ8-tACQdFXJErR9yD6HkRfkdhWJNb--GJrIZ2SVWFlrYz7I3DMEx_d6yaDbmUqvfmHg3heLK5__55xOjBK1zV2x8CEspRC8gPe8oNF</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Smyth, Gordon K.</creator><general>Royal Statistical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HGTKA</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>1989</creationdate><title>Generalized Linear Models with Varying Dispersion</title><author>Smyth, Gordon K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3617-4d7034d95101b8922c58d02cab55f616c692c20e7f89d17ba0d9f6255f8b4e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>deviance components</topic><topic>Exact sciences and technology</topic><topic>Gaussian distributions</topic><topic>Generalized linear model</topic><topic>Induced substructures</topic><topic>inverse gaussian and gamma distributions</topic><topic>iterative algorithms</topic><topic>Linear inference, regression</topic><topic>Linear models</topic><topic>Linear regression</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>normal</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>quasi‐likelihood</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smyth, Gordon K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 18</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smyth, Gordon K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Linear Models with Varying Dispersion</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle><date>1989</date><risdate>1989</risdate><volume>51</volume><issue>1</issue><spage>47</spage><epage>60</epage><pages>47-60</pages><issn>0035-9246</issn><issn>1369-7412</issn><eissn>2517-6161</eissn><eissn>1467-9868</eissn><coden>JSTBAJ</coden><abstract>Generalized linear models are further generalized to include a linear predictor for the dispersion as well as for the mean. It is shown how the convenient structure of generalized linear models can be carried over to this more general setting by considering the mean and dispersion structure separately. Mean and dispersion submodels are formulated for this, the dependent variable for the dispersion submodel being the deviance components of the mean submodel. The fact that both submodels are essentially generalized linear models themselves is used to derive simple expressions for the likelihood equations and for asymptotic tests. Estimation algorithms are proposed which have good convergence properties. The results apply mainly to the normal, inverse Gaussian and gamma distributions but can be extended to discrete distributions by using quasi-likelihoods. The methods developed are applied to a well-known data set.</abstract><cop>London</cop><pub>Royal Statistical Society</pub><doi>10.1111/j.2517-6161.1989.tb01747.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9246
ispartof Journal of the Royal Statistical Society. Series B, Methodological, 1989, Vol.51 (1), p.47-60
issn 0035-9246
1369-7412
2517-6161
1467-9868
language eng
recordid cdi_proquest_journals_1302991352
source Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects deviance components
Exact sciences and technology
Gaussian distributions
Generalized linear model
Induced substructures
inverse gaussian and gamma distributions
iterative algorithms
Linear inference, regression
Linear models
Linear regression
Mathematical functions
Mathematics
Maximum likelihood estimation
normal
Parametric models
Probability and statistics
quasi‐likelihood
Sciences and techniques of general use
Statistical variance
Statistics
Variance
title Generalized Linear Models with Varying Dispersion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Linear%20Models%20with%20Varying%20Dispersion&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Methodological&rft.au=Smyth,%20Gordon%20K.&rft.date=1989&rft.volume=51&rft.issue=1&rft.spage=47&rft.epage=60&rft.pages=47-60&rft.issn=0035-9246&rft.eissn=2517-6161&rft.coden=JSTBAJ&rft_id=info:doi/10.1111/j.2517-6161.1989.tb01747.x&rft_dat=%3Cjstor_proqu%3E2345840%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1302991352&rft_id=info:pmid/&rft_jstor_id=2345840&rfr_iscdi=true