Affine Invariant Multivariate Multisample Sign Tests

Invariant sign-type tests for the multivariate, multisample location models are developed. The definition of sign is based on the Oja criterion function. Emphasis is on the two-sample location model and the associated equivariant estimate of shift. Asymptotic theory is developed to provide large sam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1994-01, Vol.56 (1), p.235-249
Hauptverfasser: Hettmansperger, Thomas P., Oja, Hannu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 1
container_start_page 235
container_title Journal of the Royal Statistical Society. Series B, Methodological
container_volume 56
creator Hettmansperger, Thomas P.
Oja, Hannu
description Invariant sign-type tests for the multivariate, multisample location models are developed. The definition of sign is based on the Oja criterion function. Emphasis is on the two-sample location model and the associated equivariant estimate of shift. Asymptotic theory is developed to provide large sample approximations for the null distribution of the test and to provide a framework for a discussion of efficiency. Tests are then developed for the one-way and two-way lay-outs.
doi_str_mv 10.1111/j.2517-6161.1994.tb01974.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1302979104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2346042</jstor_id><sourcerecordid>2346042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3954-3dfa8b028d2cc9b1563c14e3d61748d6656f46b7981e8cf359614912b621b1633</originalsourceid><addsrcrecordid>eNqVkE9PwyAYh4nRxDn9Bh4a9drKC5QWb3Pxz5IZEzfPhFJq2nTthE63by9dl93lAm_48fzIg9AN4Aj8uq8iEkMScuAQgRAs6jIMImHR9gSNjlenaIQxjUNBGD9HF85VGGOgjI4QmxRF2Zhg1vwoW6qmC942dVfuh84Mg1OrdW2CRfnVBEvjOneJzgpVO3N12Mfo8_lpOX0N5-8vs-lkHmoqYhbSvFBphkmaE61FBjGnGpihOYeEpTnnMS8YzxKRgkl1QWPBgQkgGSeQAad0jG4H7tq23xvfLKt2YxtfKYFiIhIBmPnUw5DStnXOmkKubblSdicBy96SrGSvQvYqZG9JHizJrX98d6hQTqu6sKrRpTsSGPG_xMLHJkPst6zN7h8F8mOxeNyfPeN6YFSua-2RQSjjmBH6BzBFg98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1302979104</pqid></control><display><type>article</type><title>Affine Invariant Multivariate Multisample Sign Tests</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Hettmansperger, Thomas P. ; Oja, Hannu</creator><creatorcontrib>Hettmansperger, Thomas P. ; Oja, Hannu</creatorcontrib><description>Invariant sign-type tests for the multivariate, multisample location models are developed. The definition of sign is based on the Oja criterion function. Emphasis is on the two-sample location model and the associated equivariant estimate of shift. Asymptotic theory is developed to provide large sample approximations for the null distribution of the test and to provide a framework for a discussion of efficiency. Tests are then developed for the one-way and two-way lay-outs.</description><identifier>ISSN: 0035-9246</identifier><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 2517-6161</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.2517-6161.1994.tb01974.x</identifier><identifier>CODEN: JSTBAJ</identifier><language>eng</language><publisher>London: Blackwell Publishers</publisher><subject>asymptotic efficiency ; blumen's test ; Cumulative distribution functions ; Degrees of freedom ; equivariant estimate ; Exact sciences and technology ; Linear models ; Linear regression ; Mathematics ; Matrices ; Nonparametric inference ; Null hypothesis ; oja median ; P values ; Probability and statistics ; randles's test ; Regression analysis ; Sampling distributions ; Sciences and techniques of general use ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Methodological, 1994-01, Vol.56 (1), p.235-249</ispartof><rights>Copyright 1994 Royal Statistical Society</rights><rights>1994 Royal Statistical Society</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3954-3dfa8b028d2cc9b1563c14e3d61748d6656f46b7981e8cf359614912b621b1633</citedby><cites>FETCH-LOGICAL-c3954-3dfa8b028d2cc9b1563c14e3d61748d6656f46b7981e8cf359614912b621b1633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2346042$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2346042$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27869,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4266509$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hettmansperger, Thomas P.</creatorcontrib><creatorcontrib>Oja, Hannu</creatorcontrib><title>Affine Invariant Multivariate Multisample Sign Tests</title><title>Journal of the Royal Statistical Society. Series B, Methodological</title><description>Invariant sign-type tests for the multivariate, multisample location models are developed. The definition of sign is based on the Oja criterion function. Emphasis is on the two-sample location model and the associated equivariant estimate of shift. Asymptotic theory is developed to provide large sample approximations for the null distribution of the test and to provide a framework for a discussion of efficiency. Tests are then developed for the one-way and two-way lay-outs.</description><subject>asymptotic efficiency</subject><subject>blumen's test</subject><subject>Cumulative distribution functions</subject><subject>Degrees of freedom</subject><subject>equivariant estimate</subject><subject>Exact sciences and technology</subject><subject>Linear models</subject><subject>Linear regression</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Nonparametric inference</subject><subject>Null hypothesis</subject><subject>oja median</subject><subject>P values</subject><subject>Probability and statistics</subject><subject>randles's test</subject><subject>Regression analysis</subject><subject>Sampling distributions</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0035-9246</issn><issn>1369-7412</issn><issn>2517-6161</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkE9PwyAYh4nRxDn9Bh4a9drKC5QWb3Pxz5IZEzfPhFJq2nTthE63by9dl93lAm_48fzIg9AN4Aj8uq8iEkMScuAQgRAs6jIMImHR9gSNjlenaIQxjUNBGD9HF85VGGOgjI4QmxRF2Zhg1vwoW6qmC942dVfuh84Mg1OrdW2CRfnVBEvjOneJzgpVO3N12Mfo8_lpOX0N5-8vs-lkHmoqYhbSvFBphkmaE61FBjGnGpihOYeEpTnnMS8YzxKRgkl1QWPBgQkgGSeQAad0jG4H7tq23xvfLKt2YxtfKYFiIhIBmPnUw5DStnXOmkKubblSdicBy96SrGSvQvYqZG9JHizJrX98d6hQTqu6sKrRpTsSGPG_xMLHJkPst6zN7h8F8mOxeNyfPeN6YFSua-2RQSjjmBH6BzBFg98</recordid><startdate>19940101</startdate><enddate>19940101</enddate><creator>Hettmansperger, Thomas P.</creator><creator>Oja, Hannu</creator><general>Blackwell Publishers</general><general>Royal Statistical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HGTKA</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19940101</creationdate><title>Affine Invariant Multivariate Multisample Sign Tests</title><author>Hettmansperger, Thomas P. ; Oja, Hannu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3954-3dfa8b028d2cc9b1563c14e3d61748d6656f46b7981e8cf359614912b621b1633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>asymptotic efficiency</topic><topic>blumen's test</topic><topic>Cumulative distribution functions</topic><topic>Degrees of freedom</topic><topic>equivariant estimate</topic><topic>Exact sciences and technology</topic><topic>Linear models</topic><topic>Linear regression</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Nonparametric inference</topic><topic>Null hypothesis</topic><topic>oja median</topic><topic>P values</topic><topic>Probability and statistics</topic><topic>randles's test</topic><topic>Regression analysis</topic><topic>Sampling distributions</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hettmansperger, Thomas P.</creatorcontrib><creatorcontrib>Oja, Hannu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 18</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hettmansperger, Thomas P.</au><au>Oja, Hannu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affine Invariant Multivariate Multisample Sign Tests</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle><date>1994-01-01</date><risdate>1994</risdate><volume>56</volume><issue>1</issue><spage>235</spage><epage>249</epage><pages>235-249</pages><issn>0035-9246</issn><issn>1369-7412</issn><eissn>2517-6161</eissn><eissn>1467-9868</eissn><coden>JSTBAJ</coden><abstract>Invariant sign-type tests for the multivariate, multisample location models are developed. The definition of sign is based on the Oja criterion function. Emphasis is on the two-sample location model and the associated equivariant estimate of shift. Asymptotic theory is developed to provide large sample approximations for the null distribution of the test and to provide a framework for a discussion of efficiency. Tests are then developed for the one-way and two-way lay-outs.</abstract><cop>London</cop><pub>Blackwell Publishers</pub><doi>10.1111/j.2517-6161.1994.tb01974.x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9246
ispartof Journal of the Royal Statistical Society. Series B, Methodological, 1994-01, Vol.56 (1), p.235-249
issn 0035-9246
1369-7412
2517-6161
1467-9868
language eng
recordid cdi_proquest_journals_1302979104
source Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects asymptotic efficiency
blumen's test
Cumulative distribution functions
Degrees of freedom
equivariant estimate
Exact sciences and technology
Linear models
Linear regression
Mathematics
Matrices
Nonparametric inference
Null hypothesis
oja median
P values
Probability and statistics
randles's test
Regression analysis
Sampling distributions
Sciences and techniques of general use
Statistics
title Affine Invariant Multivariate Multisample Sign Tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affine%20Invariant%20Multivariate%20Multisample%20Sign%20Tests&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Methodological&rft.au=Hettmansperger,%20Thomas%20P.&rft.date=1994-01-01&rft.volume=56&rft.issue=1&rft.spage=235&rft.epage=249&rft.pages=235-249&rft.issn=0035-9246&rft.eissn=2517-6161&rft.coden=JSTBAJ&rft_id=info:doi/10.1111/j.2517-6161.1994.tb01974.x&rft_dat=%3Cjstor_proqu%3E2346042%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1302979104&rft_id=info:pmid/&rft_jstor_id=2346042&rfr_iscdi=true