Affine Invariant Multivariate One-Sample Sign Tests

Brown and Hettmansperger introduced an affine invariant bivariate analogue of the sign test based on the generalized median of Oja. In this paper its general multivariate extension is presented. The proposed multivariate permutation or sign change test is affine invariant with an easily computable c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1994-01, Vol.56 (1), p.221-234
Hauptverfasser: Hettmansperger, Thomas P., Nyblom, Jukka, Oja, Hannu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 1
container_start_page 221
container_title Journal of the Royal Statistical Society. Series B, Methodological
container_volume 56
creator Hettmansperger, Thomas P.
Nyblom, Jukka
Oja, Hannu
description Brown and Hettmansperger introduced an affine invariant bivariate analogue of the sign test based on the generalized median of Oja. In this paper its general multivariate extension is presented. The proposed multivariate permutation or sign change test is affine invariant with an easily computable covariance matrix. For elliptic distributions the proposed test and Randles's test are asymptotically equivalent. Formulae for calculating asymptotic relative efficiencies of the proposed test and the Oja multivariate median are given. Lower bounds for the efficiencies of the new test (and the Randles test) relative to the classical Hotelling test are established for elliptic alternatives and for unimodal elliptic alternatives. Relative efficiencies under multivariate t-distributions are also tabulated. The theory is illustrated by a simple example.
doi_str_mv 10.1111/j.2517-6161.1994.tb01973.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1302979070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2346041</jstor_id><sourcerecordid>2346041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3293-e4a684024d2ac3b539c9aca356e62b52d6502df19724b1afe8bf74911ad3a4d03</originalsourceid><addsrcrecordid>eNqVkE9PwyAYh4nRxDn9Bh4a9doKvJQOb3PxzxLNEjvPhLZg2nTthE63by9dl93lAoQfz-_Ng9ANwRHx676KaEySkBNOIiIEi7oME5FAtD1Bo-PTKRphDHEoKOPn6MK5CmNMgMEIwdSYstHBvPlRtlRNF7xv6q7cXzodLBodpmq1rnWQll9NsNSuc5fozKja6avDPkafz0_L2Wv4tniZz6ZvYQ5UQKiZ4hOGKSuoyiGLQeRC5QpirjnNYlrwGNPC-HEpy4gyepKZhAlCVAGKFRjG6Hbgrm37vfHNsmo3tvGVkgCmIhE46VMPQyq3rXNWG7m25UrZnSRY9pJkJXsTsjche0nyIElu_ee7Q4VyuaqNVU1euiOBUe6HnPjYdIj9lrXe_aNAfqTp4_7sGdcDo3Jda48MCoxjRuAPycmD-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1302979070</pqid></control><display><type>article</type><title>Affine Invariant Multivariate One-Sample Sign Tests</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Hettmansperger, Thomas P. ; Nyblom, Jukka ; Oja, Hannu</creator><creatorcontrib>Hettmansperger, Thomas P. ; Nyblom, Jukka ; Oja, Hannu</creatorcontrib><description>Brown and Hettmansperger introduced an affine invariant bivariate analogue of the sign test based on the generalized median of Oja. In this paper its general multivariate extension is presented. The proposed multivariate permutation or sign change test is affine invariant with an easily computable covariance matrix. For elliptic distributions the proposed test and Randles's test are asymptotically equivalent. Formulae for calculating asymptotic relative efficiencies of the proposed test and the Oja multivariate median are given. Lower bounds for the efficiencies of the new test (and the Randles test) relative to the classical Hotelling test are established for elliptic alternatives and for unimodal elliptic alternatives. Relative efficiencies under multivariate t-distributions are also tabulated. The theory is illustrated by a simple example.</description><identifier>ISSN: 0035-9246</identifier><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 2517-6161</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.2517-6161.1994.tb01973.x</identifier><identifier>CODEN: JSTBAJ</identifier><language>eng</language><publisher>London: Blackwell Publishers</publisher><subject>asymptotic efficiency ; blumen's test ; Covariance matrices ; Exact sciences and technology ; Hyperplanes ; location ; Mathematical functions ; Mathematical vectors ; Mathematics ; Nonparametric inference ; Null hypothesis ; Objective functions ; oja median ; one‐sample problem ; P values ; permutation test ; Probability and statistics ; randles's test ; Random sampling ; Sciences and techniques of general use ; Statistics ; T distribution</subject><ispartof>Journal of the Royal Statistical Society. Series B, Methodological, 1994-01, Vol.56 (1), p.221-234</ispartof><rights>Copyright 1994 Royal Statistical Society</rights><rights>1994 Royal Statistical Society</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3293-e4a684024d2ac3b539c9aca356e62b52d6502df19724b1afe8bf74911ad3a4d03</citedby><cites>FETCH-LOGICAL-c3293-e4a684024d2ac3b539c9aca356e62b52d6502df19724b1afe8bf74911ad3a4d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2346041$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2346041$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27869,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4266508$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hettmansperger, Thomas P.</creatorcontrib><creatorcontrib>Nyblom, Jukka</creatorcontrib><creatorcontrib>Oja, Hannu</creatorcontrib><title>Affine Invariant Multivariate One-Sample Sign Tests</title><title>Journal of the Royal Statistical Society. Series B, Methodological</title><description>Brown and Hettmansperger introduced an affine invariant bivariate analogue of the sign test based on the generalized median of Oja. In this paper its general multivariate extension is presented. The proposed multivariate permutation or sign change test is affine invariant with an easily computable covariance matrix. For elliptic distributions the proposed test and Randles's test are asymptotically equivalent. Formulae for calculating asymptotic relative efficiencies of the proposed test and the Oja multivariate median are given. Lower bounds for the efficiencies of the new test (and the Randles test) relative to the classical Hotelling test are established for elliptic alternatives and for unimodal elliptic alternatives. Relative efficiencies under multivariate t-distributions are also tabulated. The theory is illustrated by a simple example.</description><subject>asymptotic efficiency</subject><subject>blumen's test</subject><subject>Covariance matrices</subject><subject>Exact sciences and technology</subject><subject>Hyperplanes</subject><subject>location</subject><subject>Mathematical functions</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Nonparametric inference</subject><subject>Null hypothesis</subject><subject>Objective functions</subject><subject>oja median</subject><subject>one‐sample problem</subject><subject>P values</subject><subject>permutation test</subject><subject>Probability and statistics</subject><subject>randles's test</subject><subject>Random sampling</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>T distribution</subject><issn>0035-9246</issn><issn>1369-7412</issn><issn>2517-6161</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkE9PwyAYh4nRxDn9Bh4a9doKvJQOb3PxzxLNEjvPhLZg2nTthE63by9dl93lAoQfz-_Ng9ANwRHx676KaEySkBNOIiIEi7oME5FAtD1Bo-PTKRphDHEoKOPn6MK5CmNMgMEIwdSYstHBvPlRtlRNF7xv6q7cXzodLBodpmq1rnWQll9NsNSuc5fozKja6avDPkafz0_L2Wv4tniZz6ZvYQ5UQKiZ4hOGKSuoyiGLQeRC5QpirjnNYlrwGNPC-HEpy4gyepKZhAlCVAGKFRjG6Hbgrm37vfHNsmo3tvGVkgCmIhE46VMPQyq3rXNWG7m25UrZnSRY9pJkJXsTsjche0nyIElu_ee7Q4VyuaqNVU1euiOBUe6HnPjYdIj9lrXe_aNAfqTp4_7sGdcDo3Jda48MCoxjRuAPycmD-A</recordid><startdate>19940101</startdate><enddate>19940101</enddate><creator>Hettmansperger, Thomas P.</creator><creator>Nyblom, Jukka</creator><creator>Oja, Hannu</creator><general>Blackwell Publishers</general><general>Royal Statistical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HGTKA</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19940101</creationdate><title>Affine Invariant Multivariate One-Sample Sign Tests</title><author>Hettmansperger, Thomas P. ; Nyblom, Jukka ; Oja, Hannu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3293-e4a684024d2ac3b539c9aca356e62b52d6502df19724b1afe8bf74911ad3a4d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>asymptotic efficiency</topic><topic>blumen's test</topic><topic>Covariance matrices</topic><topic>Exact sciences and technology</topic><topic>Hyperplanes</topic><topic>location</topic><topic>Mathematical functions</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Nonparametric inference</topic><topic>Null hypothesis</topic><topic>Objective functions</topic><topic>oja median</topic><topic>one‐sample problem</topic><topic>P values</topic><topic>permutation test</topic><topic>Probability and statistics</topic><topic>randles's test</topic><topic>Random sampling</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>T distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hettmansperger, Thomas P.</creatorcontrib><creatorcontrib>Nyblom, Jukka</creatorcontrib><creatorcontrib>Oja, Hannu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 18</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hettmansperger, Thomas P.</au><au>Nyblom, Jukka</au><au>Oja, Hannu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affine Invariant Multivariate One-Sample Sign Tests</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle><date>1994-01-01</date><risdate>1994</risdate><volume>56</volume><issue>1</issue><spage>221</spage><epage>234</epage><pages>221-234</pages><issn>0035-9246</issn><issn>1369-7412</issn><eissn>2517-6161</eissn><eissn>1467-9868</eissn><coden>JSTBAJ</coden><abstract>Brown and Hettmansperger introduced an affine invariant bivariate analogue of the sign test based on the generalized median of Oja. In this paper its general multivariate extension is presented. The proposed multivariate permutation or sign change test is affine invariant with an easily computable covariance matrix. For elliptic distributions the proposed test and Randles's test are asymptotically equivalent. Formulae for calculating asymptotic relative efficiencies of the proposed test and the Oja multivariate median are given. Lower bounds for the efficiencies of the new test (and the Randles test) relative to the classical Hotelling test are established for elliptic alternatives and for unimodal elliptic alternatives. Relative efficiencies under multivariate t-distributions are also tabulated. The theory is illustrated by a simple example.</abstract><cop>London</cop><pub>Blackwell Publishers</pub><doi>10.1111/j.2517-6161.1994.tb01973.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9246
ispartof Journal of the Royal Statistical Society. Series B, Methodological, 1994-01, Vol.56 (1), p.221-234
issn 0035-9246
1369-7412
2517-6161
1467-9868
language eng
recordid cdi_proquest_journals_1302979070
source Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects asymptotic efficiency
blumen's test
Covariance matrices
Exact sciences and technology
Hyperplanes
location
Mathematical functions
Mathematical vectors
Mathematics
Nonparametric inference
Null hypothesis
Objective functions
oja median
one‐sample problem
P values
permutation test
Probability and statistics
randles's test
Random sampling
Sciences and techniques of general use
Statistics
T distribution
title Affine Invariant Multivariate One-Sample Sign Tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affine%20Invariant%20Multivariate%20One-Sample%20Sign%20Tests&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Methodological&rft.au=Hettmansperger,%20Thomas%20P.&rft.date=1994-01-01&rft.volume=56&rft.issue=1&rft.spage=221&rft.epage=234&rft.pages=221-234&rft.issn=0035-9246&rft.eissn=2517-6161&rft.coden=JSTBAJ&rft_id=info:doi/10.1111/j.2517-6161.1994.tb01973.x&rft_dat=%3Cjstor_proqu%3E2346041%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1302979070&rft_id=info:pmid/&rft_jstor_id=2346041&rfr_iscdi=true