On Use of the Em Algorithm for Penalized Likelihood Estimation

SUMMARY The EM algorithm is a popular approach to maximum likelihood estimation but has not been much used for penalized likelihood or maximum a posteriori estimation. This paper discusses properties of the EM algorithm in such contexts, concentrating on rates of convergence, and presents an alterna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1990, Vol.52 (3), p.443-452
1. Verfasser: Green, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 452
container_issue 3
container_start_page 443
container_title Journal of the Royal Statistical Society. Series B, Methodological
container_volume 52
creator Green, Peter J.
description SUMMARY The EM algorithm is a popular approach to maximum likelihood estimation but has not been much used for penalized likelihood or maximum a posteriori estimation. This paper discusses properties of the EM algorithm in such contexts, concentrating on rates of convergence, and presents an alternative that is usually more practical and converges at least as quickly.
doi_str_mv 10.1111/j.2517-6161.1990.tb01798.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1302957762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1302957762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4068-b2a81d531e860c871defddeb6c99b250170d8f4a9e465c583ff87c8f2ca6318b3</originalsourceid><addsrcrecordid>eNqVkF9LwzAUxYMoOKffISg-tiZNmyY-CHPMPzBQnHsOaZq41K6ZSYebn97WDX32vtwL99x7Dj8AzjGKcVdXVZxkOI8opjjGnKO4LRDOOYs3B2DwuzoEA4RIFvEkpcfgJIQKIYRJSgbg5qmB86ChM7BdaDhZwlH95rxtF0tonIfPupG1_dIlnNp3XduFcyWchNYuZWtdcwqOjKyDPtv3IZjfTV7HD9H06f5xPJpGKkWURUUiGS4zgjWjSLEcl9qUpS6o4rxIsi4yKplJJdcpzVTGiDEsV8wkSlKCWUGG4GL3d-Xdx1qHVlRu7btoQWCCEp7lOU061fVOpbwLwWsjVr4L6rcCI9HzEpXooYgeiuh5iT0vsemOL_cWMihZGy8bZcPfB04SnGa40412uk9b6-0_HMTLbHb7M5Nv-lh-6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1302957762</pqid></control><display><type>article</type><title>On Use of the Em Algorithm for Penalized Likelihood Estimation</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Green, Peter J.</creator><creatorcontrib>Green, Peter J.</creatorcontrib><description>SUMMARY The EM algorithm is a popular approach to maximum likelihood estimation but has not been much used for penalized likelihood or maximum a posteriori estimation. This paper discusses properties of the EM algorithm in such contexts, concentrating on rates of convergence, and presents an alternative that is usually more practical and converges at least as quickly.</description><identifier>ISSN: 0035-9246</identifier><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 2517-6161</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.2517-6161.1990.tb01798.x</identifier><identifier>CODEN: JSTBAJ</identifier><language>eng</language><publisher>London: Royal Statistical Society</publisher><subject>convergence rates ; em algorithm ; Exact sciences and technology ; Mathematics ; maximum a posteriori estimation ; Nonparametric inference ; one‐step‐late algorithm, penalized likelihood ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Methodological, 1990, Vol.52 (3), p.443-452</ispartof><rights>1990 Royal Statistical Society</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4068-b2a81d531e860c871defddeb6c99b250170d8f4a9e465c583ff87c8f2ca6318b3</citedby><cites>FETCH-LOGICAL-c4068-b2a81d531e860c871defddeb6c99b250170d8f4a9e465c583ff87c8f2ca6318b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27846,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19321451$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Green, Peter J.</creatorcontrib><title>On Use of the Em Algorithm for Penalized Likelihood Estimation</title><title>Journal of the Royal Statistical Society. Series B, Methodological</title><description>SUMMARY The EM algorithm is a popular approach to maximum likelihood estimation but has not been much used for penalized likelihood or maximum a posteriori estimation. This paper discusses properties of the EM algorithm in such contexts, concentrating on rates of convergence, and presents an alternative that is usually more practical and converges at least as quickly.</description><subject>convergence rates</subject><subject>em algorithm</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>maximum a posteriori estimation</subject><subject>Nonparametric inference</subject><subject>one‐step‐late algorithm, penalized likelihood</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0035-9246</issn><issn>1369-7412</issn><issn>2517-6161</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkF9LwzAUxYMoOKffISg-tiZNmyY-CHPMPzBQnHsOaZq41K6ZSYebn97WDX32vtwL99x7Dj8AzjGKcVdXVZxkOI8opjjGnKO4LRDOOYs3B2DwuzoEA4RIFvEkpcfgJIQKIYRJSgbg5qmB86ChM7BdaDhZwlH95rxtF0tonIfPupG1_dIlnNp3XduFcyWchNYuZWtdcwqOjKyDPtv3IZjfTV7HD9H06f5xPJpGKkWURUUiGS4zgjWjSLEcl9qUpS6o4rxIsi4yKplJJdcpzVTGiDEsV8wkSlKCWUGG4GL3d-Xdx1qHVlRu7btoQWCCEp7lOU061fVOpbwLwWsjVr4L6rcCI9HzEpXooYgeiuh5iT0vsemOL_cWMihZGy8bZcPfB04SnGa40412uk9b6-0_HMTLbHb7M5Nv-lh-6A</recordid><startdate>1990</startdate><enddate>1990</enddate><creator>Green, Peter J.</creator><general>Royal Statistical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HGTKA</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>1990</creationdate><title>On Use of the Em Algorithm for Penalized Likelihood Estimation</title><author>Green, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4068-b2a81d531e860c871defddeb6c99b250170d8f4a9e465c583ff87c8f2ca6318b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>convergence rates</topic><topic>em algorithm</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>maximum a posteriori estimation</topic><topic>Nonparametric inference</topic><topic>one‐step‐late algorithm, penalized likelihood</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Green, Peter J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 18</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Green, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Use of the Em Algorithm for Penalized Likelihood Estimation</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle><date>1990</date><risdate>1990</risdate><volume>52</volume><issue>3</issue><spage>443</spage><epage>452</epage><pages>443-452</pages><issn>0035-9246</issn><issn>1369-7412</issn><eissn>2517-6161</eissn><eissn>1467-9868</eissn><coden>JSTBAJ</coden><abstract>SUMMARY The EM algorithm is a popular approach to maximum likelihood estimation but has not been much used for penalized likelihood or maximum a posteriori estimation. This paper discusses properties of the EM algorithm in such contexts, concentrating on rates of convergence, and presents an alternative that is usually more practical and converges at least as quickly.</abstract><cop>London</cop><pub>Royal Statistical Society</pub><doi>10.1111/j.2517-6161.1990.tb01798.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9246
ispartof Journal of the Royal Statistical Society. Series B, Methodological, 1990, Vol.52 (3), p.443-452
issn 0035-9246
1369-7412
2517-6161
1467-9868
language eng
recordid cdi_proquest_journals_1302957762
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects convergence rates
em algorithm
Exact sciences and technology
Mathematics
maximum a posteriori estimation
Nonparametric inference
one‐step‐late algorithm, penalized likelihood
Probability and statistics
Sciences and techniques of general use
Statistics
title On Use of the Em Algorithm for Penalized Likelihood Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Use%20of%20the%20Em%20Algorithm%20for%20Penalized%20Likelihood%20Estimation&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Methodological&rft.au=Green,%20Peter%20J.&rft.date=1990&rft.volume=52&rft.issue=3&rft.spage=443&rft.epage=452&rft.pages=443-452&rft.issn=0035-9246&rft.eissn=2517-6161&rft.coden=JSTBAJ&rft_id=info:doi/10.1111/j.2517-6161.1990.tb01798.x&rft_dat=%3Cproquest_cross%3E1302957762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1302957762&rft_id=info:pmid/&rfr_iscdi=true