Fisherian Inference in Likelihood and Prequential Frames of Reference
In celebration of the centenary of the birth of Sir Ronald Fisher, this paper explores Fisher's conception of statistical inference, with special attention to the importance he placed on choosing an appropriate frame of reference to define the inferential model. In particular, we investigate in...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1991, Vol.53 (1), p.79-109 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | 1 |
container_start_page | 79 |
container_title | Journal of the Royal Statistical Society. Series B, Methodological |
container_volume | 53 |
creator | Dawid, A. P. |
description | In celebration of the centenary of the birth of Sir Ronald Fisher, this paper explores Fisher's conception of statistical inference, with special attention to the importance he placed on choosing an appropriate frame of reference to define the inferential model. In particular, we investigate inferential models which respect the likelihood principle or the prequential principle, and argue that these will typically have an asymptotic sampling theory justification. |
doi_str_mv | 10.1111/j.2517-6161.1991.tb01810.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1302942368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2345729</jstor_id><sourcerecordid>2345729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3600-1593614ecf3523d1b5b662c674041ec7cc70b398da0f050b9dc46c43d5d2cce83</originalsourceid><addsrcrecordid>eNqVkF1PwjAUhhujiYj-Ay8W9Xbz9HPMOySgJCQa0Oum67rQOTZsR4R_7-YI9_amTc57nrd5ELrDEOH2PBYR4TgOBRY4wkmCoyYFPGqn-zM0OI3O0QCA8jAhTFyiK-8LAMCU0QGazqxfG2dVFcyr3DhTaRPYKljYL1PadV1ngaqy4N2Z752pGqvKYObUxvigzoOlOW5co4tcld7cHO8h-pxNPyav4eLtZT4ZL0JNBUCIeUIFZkbnlBOa4ZSnQhAtYgYMGx1rHUNKk1GmIAcOaZJpJjSjGc-I1mZEh-i-525d3f7HN7Kod65qKyWmQBJGqOhST31Ku9p7Z3K5dXaj3EFikJ02WcjOjezcyE6bPGqT-3b54VihvFZl7lSlrT8ROCGMM2hj4z72Y0tz-EeBXK5Wz3_vlnHbMwrf1O7EIJTxmCT0F-Rnik0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1302942368</pqid></control><display><type>article</type><title>Fisherian Inference in Likelihood and Prequential Frames of Reference</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Dawid, A. P.</creator><creatorcontrib>Dawid, A. P.</creatorcontrib><description>In celebration of the centenary of the birth of Sir Ronald Fisher, this paper explores Fisher's conception of statistical inference, with special attention to the importance he placed on choosing an appropriate frame of reference to define the inferential model. In particular, we investigate inferential models which respect the likelihood principle or the prequential principle, and argue that these will typically have an asymptotic sampling theory justification.</description><identifier>ISSN: 0035-9246</identifier><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 2517-6161</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.2517-6161.1991.tb01810.x</identifier><identifier>CODEN: JSTBAJ</identifier><language>eng</language><publisher>London: Blackwell Publishers</publisher><subject>Analytical forecasting ; asymptotic estimation theory ; bayesian inference ; Exact sciences and technology ; Inference ; inferential model ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood estimators ; Modeling ; Observational frames of reference ; prediction error ; prequential principle ; Probabilities ; Probability and statistics ; production model ; production principle ; R. A. fisher ; Sampling distributions ; Sciences and techniques of general use ; Statistical discrepancies ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Methodological, 1991, Vol.53 (1), p.79-109</ispartof><rights>Copyright 1991 Royal Statistical Society</rights><rights>1991 Royal Statistical Society</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3600-1593614ecf3523d1b5b662c674041ec7cc70b398da0f050b9dc46c43d5d2cce83</citedby><cites>FETCH-LOGICAL-c3600-1593614ecf3523d1b5b662c674041ec7cc70b398da0f050b9dc46c43d5d2cce83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2345729$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2345729$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27869,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5224540$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawid, A. P.</creatorcontrib><title>Fisherian Inference in Likelihood and Prequential Frames of Reference</title><title>Journal of the Royal Statistical Society. Series B, Methodological</title><description>In celebration of the centenary of the birth of Sir Ronald Fisher, this paper explores Fisher's conception of statistical inference, with special attention to the importance he placed on choosing an appropriate frame of reference to define the inferential model. In particular, we investigate inferential models which respect the likelihood principle or the prequential principle, and argue that these will typically have an asymptotic sampling theory justification.</description><subject>Analytical forecasting</subject><subject>asymptotic estimation theory</subject><subject>bayesian inference</subject><subject>Exact sciences and technology</subject><subject>Inference</subject><subject>inferential model</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Modeling</subject><subject>Observational frames of reference</subject><subject>prediction error</subject><subject>prequential principle</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>production model</subject><subject>production principle</subject><subject>R. A. fisher</subject><subject>Sampling distributions</subject><subject>Sciences and techniques of general use</subject><subject>Statistical discrepancies</subject><subject>Statistics</subject><issn>0035-9246</issn><issn>1369-7412</issn><issn>2517-6161</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkF1PwjAUhhujiYj-Ay8W9Xbz9HPMOySgJCQa0Oum67rQOTZsR4R_7-YI9_amTc57nrd5ELrDEOH2PBYR4TgOBRY4wkmCoyYFPGqn-zM0OI3O0QCA8jAhTFyiK-8LAMCU0QGazqxfG2dVFcyr3DhTaRPYKljYL1PadV1ngaqy4N2Z752pGqvKYObUxvigzoOlOW5co4tcld7cHO8h-pxNPyav4eLtZT4ZL0JNBUCIeUIFZkbnlBOa4ZSnQhAtYgYMGx1rHUNKk1GmIAcOaZJpJjSjGc-I1mZEh-i-525d3f7HN7Kod65qKyWmQBJGqOhST31Ku9p7Z3K5dXaj3EFikJ02WcjOjezcyE6bPGqT-3b54VihvFZl7lSlrT8ROCGMM2hj4z72Y0tz-EeBXK5Wz3_vlnHbMwrf1O7EIJTxmCT0F-Rnik0</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Dawid, A. P.</creator><general>Blackwell Publishers</general><general>Royal Statistical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HGTKA</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>1991</creationdate><title>Fisherian Inference in Likelihood and Prequential Frames of Reference</title><author>Dawid, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3600-1593614ecf3523d1b5b662c674041ec7cc70b398da0f050b9dc46c43d5d2cce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Analytical forecasting</topic><topic>asymptotic estimation theory</topic><topic>bayesian inference</topic><topic>Exact sciences and technology</topic><topic>Inference</topic><topic>inferential model</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Modeling</topic><topic>Observational frames of reference</topic><topic>prediction error</topic><topic>prequential principle</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>production model</topic><topic>production principle</topic><topic>R. A. fisher</topic><topic>Sampling distributions</topic><topic>Sciences and techniques of general use</topic><topic>Statistical discrepancies</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawid, A. P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 18</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawid, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fisherian Inference in Likelihood and Prequential Frames of Reference</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Methodological</jtitle><date>1991</date><risdate>1991</risdate><volume>53</volume><issue>1</issue><spage>79</spage><epage>109</epage><pages>79-109</pages><issn>0035-9246</issn><issn>1369-7412</issn><eissn>2517-6161</eissn><eissn>1467-9868</eissn><coden>JSTBAJ</coden><abstract>In celebration of the centenary of the birth of Sir Ronald Fisher, this paper explores Fisher's conception of statistical inference, with special attention to the importance he placed on choosing an appropriate frame of reference to define the inferential model. In particular, we investigate inferential models which respect the likelihood principle or the prequential principle, and argue that these will typically have an asymptotic sampling theory justification.</abstract><cop>London</cop><pub>Blackwell Publishers</pub><doi>10.1111/j.2517-6161.1991.tb01810.x</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9246 |
ispartof | Journal of the Royal Statistical Society. Series B, Methodological, 1991, Vol.53 (1), p.79-109 |
issn | 0035-9246 1369-7412 2517-6161 1467-9868 |
language | eng |
recordid | cdi_proquest_journals_1302942368 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Analytical forecasting asymptotic estimation theory bayesian inference Exact sciences and technology Inference inferential model Mathematics Maximum likelihood estimation Maximum likelihood estimators Modeling Observational frames of reference prediction error prequential principle Probabilities Probability and statistics production model production principle R. A. fisher Sampling distributions Sciences and techniques of general use Statistical discrepancies Statistics |
title | Fisherian Inference in Likelihood and Prequential Frames of Reference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fisherian%20Inference%20in%20Likelihood%20and%20Prequential%20Frames%20of%20Reference&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Methodological&rft.au=Dawid,%20A.%20P.&rft.date=1991&rft.volume=53&rft.issue=1&rft.spage=79&rft.epage=109&rft.pages=79-109&rft.issn=0035-9246&rft.eissn=2517-6161&rft.coden=JSTBAJ&rft_id=info:doi/10.1111/j.2517-6161.1991.tb01810.x&rft_dat=%3Cjstor_proqu%3E2345729%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1302942368&rft_id=info:pmid/&rft_jstor_id=2345729&rfr_iscdi=true |