An Extreme-Value Model for Predicting the Results of Horse Races

Results of horse races in 1979-80 are analysed to see if the extreme-value distribution can model the times to run horse races: horses with the same bookmakers' odds of winning are classed as one group; the distribution of times for each group is extreme-value with location parameter β dependin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Statistics 1984-01, Vol.33 (2), p.125-133
1. Verfasser: Henery, R. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 2
container_start_page 125
container_title Applied Statistics
container_volume 33
creator Henery, R. J.
description Results of horse races in 1979-80 are analysed to see if the extreme-value distribution can model the times to run horse races: horses with the same bookmakers' odds of winning are classed as one group; the distribution of times for each group is extreme-value with location parameter β depending on the win odds; and the scale parameter θ is common to all groups. The model predicts that the win probability p for the group is p = exp ((β0 - β)/θ) for some constant β0, and this is borne out by the data. Only the tail of the empirical distribution functions is consistent with the model; however, it is essentially this tail which determines the win probabilities, so if the aim is to do just that the model will serve a useful purpose.
doi_str_mv 10.2307/2347436
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1299677473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2347436</jstor_id><sourcerecordid>2347436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2804-7e2ac73efaea31bcc08f946c4b4e388db28e4c80e4d96482d3801955cfb998cf3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKf4FwIKXnXmq01y5xjTCYqyqbclTU-0o2tm0qL791Y29Grn5oXDw_PCi9A5JSPGibxmXEjBswM0oCKTiVYyO0QDQniaaJaKY3QS45L0R4kYoJtxg6ffbYAVJG-m7gA_-hJq7HzAzwHKyrZV847bD8BziF3dRuwdnvkQ-4exEE_RkTN1hLNdDtHr7fRlMksenu7uJ-OHxDJFRCKBGSs5OAOG08JaopwWmRWFAK5UWTAFwioCotSZUKzkilCdptYVWivr-BBdbL3r4D87iG2-9F1o-sqcMq0zKYXkPXW1pWzwMQZw-TpUKxM2OSX57zz5bp6evNz5TLSmdsE0top_uFKSCkl6bLTFvqoaNvts-XyxmBCqqPj3LmPrw976H0tbes8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1299677473</pqid></control><display><type>article</type><title>An Extreme-Value Model for Predicting the Results of Horse Races</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><creator>Henery, R. J.</creator><creatorcontrib>Henery, R. J.</creatorcontrib><description>Results of horse races in 1979-80 are analysed to see if the extreme-value distribution can model the times to run horse races: horses with the same bookmakers' odds of winning are classed as one group; the distribution of times for each group is extreme-value with location parameter β depending on the win odds; and the scale parameter θ is common to all groups. The model predicts that the win probability p for the group is p = exp ((β0 - β)/θ) for some constant β0, and this is borne out by the data. Only the tail of the empirical distribution functions is consistent with the model; however, it is essentially this tail which determines the win probabilities, so if the aim is to do just that the model will serve a useful purpose.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.2307/2347436</identifier><identifier>CODEN: APSTAG</identifier><language>eng</language><publisher>Oxford: Royal Statistical Society</publisher><subject>Applications ; Applied statistics ; Arithmetic mean ; Betting ; Disabilities ; Distribution functions ; Empirical distribution ; Estimate reliability ; Exact sciences and technology ; Extreme‐value ; Gambling ; Horse races ; Mathematics ; Modeling ; Probabilities ; Probability and statistics ; Sciences and techniques of general use ; Statistical variance ; Statistics ; Win probability</subject><ispartof>Applied Statistics, 1984-01, Vol.33 (2), p.125-133</ispartof><rights>Copyright Royal Statistical Society</rights><rights>1984 Royal Statistical Society</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2804-7e2ac73efaea31bcc08f946c4b4e388db28e4c80e4d96482d3801955cfb998cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2347436$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2347436$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27869,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8871470$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Henery, R. J.</creatorcontrib><title>An Extreme-Value Model for Predicting the Results of Horse Races</title><title>Applied Statistics</title><description>Results of horse races in 1979-80 are analysed to see if the extreme-value distribution can model the times to run horse races: horses with the same bookmakers' odds of winning are classed as one group; the distribution of times for each group is extreme-value with location parameter β depending on the win odds; and the scale parameter θ is common to all groups. The model predicts that the win probability p for the group is p = exp ((β0 - β)/θ) for some constant β0, and this is borne out by the data. Only the tail of the empirical distribution functions is consistent with the model; however, it is essentially this tail which determines the win probabilities, so if the aim is to do just that the model will serve a useful purpose.</description><subject>Applications</subject><subject>Applied statistics</subject><subject>Arithmetic mean</subject><subject>Betting</subject><subject>Disabilities</subject><subject>Distribution functions</subject><subject>Empirical distribution</subject><subject>Estimate reliability</subject><subject>Exact sciences and technology</subject><subject>Extreme‐value</subject><subject>Gambling</subject><subject>Horse races</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Win probability</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kF1LwzAUhoMoOKf4FwIKXnXmq01y5xjTCYqyqbclTU-0o2tm0qL791Y29Grn5oXDw_PCi9A5JSPGibxmXEjBswM0oCKTiVYyO0QDQniaaJaKY3QS45L0R4kYoJtxg6ffbYAVJG-m7gA_-hJq7HzAzwHKyrZV847bD8BziF3dRuwdnvkQ-4exEE_RkTN1hLNdDtHr7fRlMksenu7uJ-OHxDJFRCKBGSs5OAOG08JaopwWmRWFAK5UWTAFwioCotSZUKzkilCdptYVWivr-BBdbL3r4D87iG2-9F1o-sqcMq0zKYXkPXW1pWzwMQZw-TpUKxM2OSX57zz5bp6evNz5TLSmdsE0top_uFKSCkl6bLTFvqoaNvts-XyxmBCqqPj3LmPrw976H0tbes8</recordid><startdate>19840101</startdate><enddate>19840101</enddate><creator>Henery, R. J.</creator><general>Royal Statistical Society</general><general>Blackwell</general><general>Royal Statistical Society, etc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>FMSEA</scope><scope>HAGHG</scope><scope>ICWRT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19840101</creationdate><title>An Extreme-Value Model for Predicting the Results of Horse Races</title><author>Henery, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2804-7e2ac73efaea31bcc08f946c4b4e388db28e4c80e4d96482d3801955cfb998cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Applications</topic><topic>Applied statistics</topic><topic>Arithmetic mean</topic><topic>Betting</topic><topic>Disabilities</topic><topic>Distribution functions</topic><topic>Empirical distribution</topic><topic>Estimate reliability</topic><topic>Exact sciences and technology</topic><topic>Extreme‐value</topic><topic>Gambling</topic><topic>Horse races</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Win probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henery, R. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 05</collection><collection>Periodicals Index Online Segment 12</collection><collection>Periodicals Index Online Segment 28</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henery, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extreme-Value Model for Predicting the Results of Horse Races</atitle><jtitle>Applied Statistics</jtitle><date>1984-01-01</date><risdate>1984</risdate><volume>33</volume><issue>2</issue><spage>125</spage><epage>133</epage><pages>125-133</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><coden>APSTAG</coden><abstract>Results of horse races in 1979-80 are analysed to see if the extreme-value distribution can model the times to run horse races: horses with the same bookmakers' odds of winning are classed as one group; the distribution of times for each group is extreme-value with location parameter β depending on the win odds; and the scale parameter θ is common to all groups. The model predicts that the win probability p for the group is p = exp ((β0 - β)/θ) for some constant β0, and this is borne out by the data. Only the tail of the empirical distribution functions is consistent with the model; however, it is essentially this tail which determines the win probabilities, so if the aim is to do just that the model will serve a useful purpose.</abstract><cop>Oxford</cop><pub>Royal Statistical Society</pub><doi>10.2307/2347436</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Applied Statistics, 1984-01, Vol.33 (2), p.125-133
issn 0035-9254
1467-9876
language eng
recordid cdi_proquest_journals_1299677473
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete
subjects Applications
Applied statistics
Arithmetic mean
Betting
Disabilities
Distribution functions
Empirical distribution
Estimate reliability
Exact sciences and technology
Extreme‐value
Gambling
Horse races
Mathematics
Modeling
Probabilities
Probability and statistics
Sciences and techniques of general use
Statistical variance
Statistics
Win probability
title An Extreme-Value Model for Predicting the Results of Horse Races
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extreme-Value%20Model%20for%20Predicting%20the%20Results%20of%20Horse%20Races&rft.jtitle=Applied%20Statistics&rft.au=Henery,%20R.%20J.&rft.date=1984-01-01&rft.volume=33&rft.issue=2&rft.spage=125&rft.epage=133&rft.pages=125-133&rft.issn=0035-9254&rft.eissn=1467-9876&rft.coden=APSTAG&rft_id=info:doi/10.2307/2347436&rft_dat=%3Cjstor_proqu%3E2347436%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1299677473&rft_id=info:pmid/&rft_jstor_id=2347436&rfr_iscdi=true