A Comparison of Maximum Likelihood and Bayesian Estimators for the Three- Parameter Weibull Distribution

Maximum likelihood and Bayesian estimators are developed and compared for the three-parameter Weibull distribution. For the data analysed in the paper, the two sets of estimators are found to be very different. The reasons for this are explored, and ways of reducing the discrepancy, including repara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Statistics 1987-01, Vol.36 (3), p.358-369
Hauptverfasser: Smith, Richard L., Naylor, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue 3
container_start_page 358
container_title Applied Statistics
container_volume 36
creator Smith, Richard L.
Naylor, J. C.
description Maximum likelihood and Bayesian estimators are developed and compared for the three-parameter Weibull distribution. For the data analysed in the paper, the two sets of estimators are found to be very different. The reasons for this are explored, and ways of reducing the discrepancy, including reparametrization, are investigated. Our overall conclusion is that there are practical advantages to the Bayesian approach.
doi_str_mv 10.2307/2347795
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1299675381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2347795</jstor_id><sourcerecordid>2347795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3297-1c4274fad7b10e0746b3638fcc5cf8ffe9d3492906c68fe043f31bfd5f7aeacb3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKf4FwIKXnXmq01zOev8gIniJl6WNE1oZtvMpEX3761s6NXOzTkXD8855wXgHKMJoYhfE8o4F_EBGGGW8EikPDkEI4RoHAkSs2NwEsIKDYURG4FqCjPXrKW3wbXQGfgkv23TN3BuP3RtK-dKKNsS3siNDla2cBY628jO-QCN87CrNFxWXusIvkgvG91pD9-1Lfq6hrc2dH4YO-vaU3BkZB302a6PwdvdbJk9RPPn-8dsOo8UJYJHWDHCmZElLzDSiLOkoAlNjVKxMqkxWpSUCSJQopLUaMSoobgwZWy41FIVdAwutt61d5-9Dl2-cr1vh5U5JkIkPKYpHqirLaW8C8Frk6_98Jbf5BjlvzHmuxgH8nLnk0HJ2njZKhv-cM7SlA5XjMFki33ZWm_22fLXxSJDBBH-712FIcy9638AyeGKuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1299675381</pqid></control><display><type>article</type><title>A Comparison of Maximum Likelihood and Bayesian Estimators for the Three- Parameter Weibull Distribution</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Smith, Richard L. ; Naylor, J. C.</creator><creatorcontrib>Smith, Richard L. ; Naylor, J. C.</creatorcontrib><description>Maximum likelihood and Bayesian estimators are developed and compared for the three-parameter Weibull distribution. For the data analysed in the paper, the two sets of estimators are found to be very different. The reasons for this are explored, and ways of reducing the discrepancy, including reparametrization, are investigated. Our overall conclusion is that there are practical advantages to the Bayesian approach.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.2307/2347795</identifier><identifier>CODEN: APSTAG</identifier><language>eng</language><publisher>Oxford: Royal Statistical Society</publisher><subject>Analytical estimating ; Applied sciences ; Bayesian inference ; Data sampling ; Estimators ; Exact sciences and technology ; Generalised Extreme Value distribution ; Goodness of fit ; Inference ; Maximum likelihood ; Maximum likelihood estimation ; Maximum likelihood estimators ; Nose distribution ; Operational research and scientific management ; Operational research. Management science ; Reliability theory. Replacement problems ; Sampling distributions ; Standard deviation ; Standard error ; Three‐parameter Weibull distribution ; Weakest link model</subject><ispartof>Applied Statistics, 1987-01, Vol.36 (3), p.358-369</ispartof><rights>Copyright Royal Statistical Society</rights><rights>1987 Royal Statistical Society</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3297-1c4274fad7b10e0746b3638fcc5cf8ffe9d3492906c68fe043f31bfd5f7aeacb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2347795$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2347795$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27869,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7488304$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Richard L.</creatorcontrib><creatorcontrib>Naylor, J. C.</creatorcontrib><title>A Comparison of Maximum Likelihood and Bayesian Estimators for the Three- Parameter Weibull Distribution</title><title>Applied Statistics</title><description>Maximum likelihood and Bayesian estimators are developed and compared for the three-parameter Weibull distribution. For the data analysed in the paper, the two sets of estimators are found to be very different. The reasons for this are explored, and ways of reducing the discrepancy, including reparametrization, are investigated. Our overall conclusion is that there are practical advantages to the Bayesian approach.</description><subject>Analytical estimating</subject><subject>Applied sciences</subject><subject>Bayesian inference</subject><subject>Data sampling</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Generalised Extreme Value distribution</subject><subject>Goodness of fit</subject><subject>Inference</subject><subject>Maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Nose distribution</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Reliability theory. Replacement problems</subject><subject>Sampling distributions</subject><subject>Standard deviation</subject><subject>Standard error</subject><subject>Three‐parameter Weibull distribution</subject><subject>Weakest link model</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kF1LwzAUhoMoOKf4FwIKXnXmq01zOev8gIniJl6WNE1oZtvMpEX3761s6NXOzTkXD8855wXgHKMJoYhfE8o4F_EBGGGW8EikPDkEI4RoHAkSs2NwEsIKDYURG4FqCjPXrKW3wbXQGfgkv23TN3BuP3RtK-dKKNsS3siNDla2cBY628jO-QCN87CrNFxWXusIvkgvG91pD9-1Lfq6hrc2dH4YO-vaU3BkZB302a6PwdvdbJk9RPPn-8dsOo8UJYJHWDHCmZElLzDSiLOkoAlNjVKxMqkxWpSUCSJQopLUaMSoobgwZWy41FIVdAwutt61d5-9Dl2-cr1vh5U5JkIkPKYpHqirLaW8C8Frk6_98Jbf5BjlvzHmuxgH8nLnk0HJ2njZKhv-cM7SlA5XjMFki33ZWm_22fLXxSJDBBH-712FIcy9638AyeGKuQ</recordid><startdate>19870101</startdate><enddate>19870101</enddate><creator>Smith, Richard L.</creator><creator>Naylor, J. C.</creator><general>Royal Statistical Society</general><general>Blackwell</general><general>Royal Statistical Society, etc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>FMSEA</scope><scope>HAGHG</scope><scope>ICWRT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19870101</creationdate><title>A Comparison of Maximum Likelihood and Bayesian Estimators for the Three- Parameter Weibull Distribution</title><author>Smith, Richard L. ; Naylor, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3297-1c4274fad7b10e0746b3638fcc5cf8ffe9d3492906c68fe043f31bfd5f7aeacb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Analytical estimating</topic><topic>Applied sciences</topic><topic>Bayesian inference</topic><topic>Data sampling</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Generalised Extreme Value distribution</topic><topic>Goodness of fit</topic><topic>Inference</topic><topic>Maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Nose distribution</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Reliability theory. Replacement problems</topic><topic>Sampling distributions</topic><topic>Standard deviation</topic><topic>Standard error</topic><topic>Three‐parameter Weibull distribution</topic><topic>Weakest link model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Richard L.</creatorcontrib><creatorcontrib>Naylor, J. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 05</collection><collection>Periodicals Index Online Segment 12</collection><collection>Periodicals Index Online Segment 28</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Richard L.</au><au>Naylor, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Maximum Likelihood and Bayesian Estimators for the Three- Parameter Weibull Distribution</atitle><jtitle>Applied Statistics</jtitle><date>1987-01-01</date><risdate>1987</risdate><volume>36</volume><issue>3</issue><spage>358</spage><epage>369</epage><pages>358-369</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><coden>APSTAG</coden><abstract>Maximum likelihood and Bayesian estimators are developed and compared for the three-parameter Weibull distribution. For the data analysed in the paper, the two sets of estimators are found to be very different. The reasons for this are explored, and ways of reducing the discrepancy, including reparametrization, are investigated. Our overall conclusion is that there are practical advantages to the Bayesian approach.</abstract><cop>Oxford</cop><pub>Royal Statistical Society</pub><doi>10.2307/2347795</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Applied Statistics, 1987-01, Vol.36 (3), p.358-369
issn 0035-9254
1467-9876
language eng
recordid cdi_proquest_journals_1299675381
source Periodicals Index Online; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Analytical estimating
Applied sciences
Bayesian inference
Data sampling
Estimators
Exact sciences and technology
Generalised Extreme Value distribution
Goodness of fit
Inference
Maximum likelihood
Maximum likelihood estimation
Maximum likelihood estimators
Nose distribution
Operational research and scientific management
Operational research. Management science
Reliability theory. Replacement problems
Sampling distributions
Standard deviation
Standard error
Three‐parameter Weibull distribution
Weakest link model
title A Comparison of Maximum Likelihood and Bayesian Estimators for the Three- Parameter Weibull Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Maximum%20Likelihood%20and%20Bayesian%20Estimators%20for%20the%20Three-%20Parameter%20Weibull%20Distribution&rft.jtitle=Applied%20Statistics&rft.au=Smith,%20Richard%20L.&rft.date=1987-01-01&rft.volume=36&rft.issue=3&rft.spage=358&rft.epage=369&rft.pages=358-369&rft.issn=0035-9254&rft.eissn=1467-9876&rft.coden=APSTAG&rft_id=info:doi/10.2307/2347795&rft_dat=%3Cjstor_proqu%3E2347795%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1299675381&rft_id=info:pmid/&rft_jstor_id=2347795&rfr_iscdi=true