Some Computational Procedures for the Best Subset Problem
In an earlier paper, Garside (1965) gave an algorithm for calculating all subsets in multiple-regression analysis, thereby obtaining the subset of a given size that minimized the minimum residual sum of squares. This paper develops further the facilities in the earlier algorithm and introduces a new...
Gespeichert in:
Veröffentlicht in: | Applied Statistics 1971-01, Vol.20 (1), p.8-15 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 8 |
container_title | Applied Statistics |
container_volume | 20 |
creator | Garside, M. J. |
description | In an earlier paper, Garside (1965) gave an algorithm for calculating all subsets in multiple-regression analysis, thereby obtaining the subset of a given size that minimized the minimum residual sum of squares. This paper develops further the facilities in the earlier algorithm and introduces a new algorithm which, although slightly restrictive, is very much faster in execution. |
doi_str_mv | 10.2307/2346626 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1299669724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2346626</jstor_id><sourcerecordid>2346626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2513-493a698423040a6683918364a28b1d3d985696400b38a32c2e995d86fb368963</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFbxLwQUXKXOKzdzlxrqAwqK6X6YJBNsSZw6kyD9905Jt72bs7jfORwOIbeMLrig-SMXEoDDGZkxCXmKKodzMqNUZCnyTF6SqxC2NB6jckawdL1NCtfvxsEMG_djuuTTu9o2o7chaZ1Phm-bPNswJOVYBTsc3lVn-2ty0Zou2Jujzsn6Zbku3tLVx-t78bRKa54xkUoUBlDJ2E1SA6AEMiVAGq4q1ogGVQYIktJKKCN4zS1i1ihoKwEKQczJ3RS78-53jDX01o0-1gyacUQAzLmM1MNE1d6F4G2rd37TG7_XjOrDLPo4SyQXE_m36ez-FKa_yrKgjCsRDfeTYRsG50_m_gPlK2mx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1299669724</pqid></control><display><type>article</type><title>Some Computational Procedures for the Best Subset Problem</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Garside, M. J.</creator><creatorcontrib>Garside, M. J.</creatorcontrib><description>In an earlier paper, Garside (1965) gave an algorithm for calculating all subsets in multiple-regression analysis, thereby obtaining the subset of a given size that minimized the minimum residual sum of squares. This paper develops further the facilities in the earlier algorithm and introduces a new algorithm which, although slightly restrictive, is very much faster in execution.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.2307/2346626</identifier><language>eng</language><publisher>London: Royal Statistical Society</publisher><subject>Algorithms ; Applied statistics ; Induced substructures ; Integers ; Linear regression ; Multiple regression ; Regression analysis ; Vertices</subject><ispartof>Applied Statistics, 1971-01, Vol.20 (1), p.8-15</ispartof><rights>1971 The Authors</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2513-493a698423040a6683918364a28b1d3d985696400b38a32c2e995d86fb368963</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2346626$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2346626$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27869,27923,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Garside, M. J.</creatorcontrib><title>Some Computational Procedures for the Best Subset Problem</title><title>Applied Statistics</title><description>In an earlier paper, Garside (1965) gave an algorithm for calculating all subsets in multiple-regression analysis, thereby obtaining the subset of a given size that minimized the minimum residual sum of squares. This paper develops further the facilities in the earlier algorithm and introduces a new algorithm which, although slightly restrictive, is very much faster in execution.</description><subject>Algorithms</subject><subject>Applied statistics</subject><subject>Induced substructures</subject><subject>Integers</subject><subject>Linear regression</subject><subject>Multiple regression</subject><subject>Regression analysis</subject><subject>Vertices</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1971</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kEtLw0AUhQdRsFbxLwQUXKXOKzdzlxrqAwqK6X6YJBNsSZw6kyD9905Jt72bs7jfORwOIbeMLrig-SMXEoDDGZkxCXmKKodzMqNUZCnyTF6SqxC2NB6jckawdL1NCtfvxsEMG_djuuTTu9o2o7chaZ1Phm-bPNswJOVYBTsc3lVn-2ty0Zou2Jujzsn6Zbku3tLVx-t78bRKa54xkUoUBlDJ2E1SA6AEMiVAGq4q1ogGVQYIktJKKCN4zS1i1ihoKwEKQczJ3RS78-53jDX01o0-1gyacUQAzLmM1MNE1d6F4G2rd37TG7_XjOrDLPo4SyQXE_m36ez-FKa_yrKgjCsRDfeTYRsG50_m_gPlK2mx</recordid><startdate>19710101</startdate><enddate>19710101</enddate><creator>Garside, M. J.</creator><general>Royal Statistical Society</general><general>Royal Statistical Society, etc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>FMSEA</scope><scope>HAGHG</scope><scope>ICWRT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19710101</creationdate><title>Some Computational Procedures for the Best Subset Problem</title><author>Garside, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2513-493a698423040a6683918364a28b1d3d985696400b38a32c2e995d86fb368963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1971</creationdate><topic>Algorithms</topic><topic>Applied statistics</topic><topic>Induced substructures</topic><topic>Integers</topic><topic>Linear regression</topic><topic>Multiple regression</topic><topic>Regression analysis</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garside, M. J.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 05</collection><collection>Periodicals Index Online Segment 12</collection><collection>Periodicals Index Online Segment 28</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garside, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Computational Procedures for the Best Subset Problem</atitle><jtitle>Applied Statistics</jtitle><date>1971-01-01</date><risdate>1971</risdate><volume>20</volume><issue>1</issue><spage>8</spage><epage>15</epage><pages>8-15</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>In an earlier paper, Garside (1965) gave an algorithm for calculating all subsets in multiple-regression analysis, thereby obtaining the subset of a given size that minimized the minimum residual sum of squares. This paper develops further the facilities in the earlier algorithm and introduces a new algorithm which, although slightly restrictive, is very much faster in execution.</abstract><cop>London</cop><pub>Royal Statistical Society</pub><doi>10.2307/2346626</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9254 |
ispartof | Applied Statistics, 1971-01, Vol.20 (1), p.8-15 |
issn | 0035-9254 1467-9876 |
language | eng |
recordid | cdi_proquest_journals_1299669724 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | Algorithms Applied statistics Induced substructures Integers Linear regression Multiple regression Regression analysis Vertices |
title | Some Computational Procedures for the Best Subset Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Computational%20Procedures%20for%20the%20Best%20Subset%20Problem&rft.jtitle=Applied%20Statistics&rft.au=Garside,%20M.%20J.&rft.date=1971-01-01&rft.volume=20&rft.issue=1&rft.spage=8&rft.epage=15&rft.pages=8-15&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.2307/2346626&rft_dat=%3Cjstor_proqu%3E2346626%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1299669724&rft_id=info:pmid/&rft_jstor_id=2346626&rfr_iscdi=true |