A New, Geometric Proof of Shephard's Duality Theorem

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of economics (Vienna, Austria) Austria), 1986-01, Vol.46 (3), p.299-304
Hauptverfasser: Hackman, Steven T., Hackman, Sy. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 3
container_start_page 299
container_title Journal of economics (Vienna, Austria)
container_volume 46
creator Hackman, Steven T.
Hackman, Sy. T.
description
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1299511604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41793805</jstor_id><sourcerecordid>41793805</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1129-27e561a9daf96158e02c2a6bed72fa1c3628fc77f512c52446457e093f3a56493</originalsourceid><addsrcrecordid>eNotjl1LwzAYhYMoWKc_QQh44Y2FvPlsLsfUKYxNcF6X2L6xLaupSYvs31uYcODcPDznnJEMNJjcgJDnJGNWQF5oVVySq5Q6xpjU2mRELukWfx_oGkOPY2wr-hZD8HTOe4ND42J9n-jj5A7teKT7BkPE_ppceHdIePPfC_Lx_LRfveSb3fp1tdzkXwDc5tyg0uBs7bzVoApkvOJOf2JtuHdQCc0LXxnjFfBKcSm1VAbnp144paUVC3J38g4x_EyYxrILU_yeJ8vZbxWAZnKmbk9Ul8YQyyG2vYvHUoKxomBK_AGkD0lO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1299511604</pqid></control><display><type>article</type><title>A New, Geometric Proof of Shephard's Duality Theorem</title><source>Periodicals Index Online</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hackman, Steven T. ; Hackman, Sy. T.</creator><creatorcontrib>Hackman, Steven T. ; Hackman, Sy. T.</creatorcontrib><identifier>ISSN: 0931-8658</identifier><identifier>EISSN: 1617-7134</identifier><language>eng</language><publisher>Wien: Springer-Verlag</publisher><subject>Capital costs ; Commercial production ; Cost functions ; Distance functions ; Economic theory ; Hyperplanes ; Mathematical duality ; Mathematical monotonicity ; Mathematical theorems ; Miscellanea ; Production costs</subject><ispartof>Journal of economics (Vienna, Austria), 1986-01, Vol.46 (3), p.299-304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41793805$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41793805$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27869,58017,58250</link.rule.ids></links><search><creatorcontrib>Hackman, Steven T.</creatorcontrib><creatorcontrib>Hackman, Sy. T.</creatorcontrib><title>A New, Geometric Proof of Shephard's Duality Theorem</title><title>Journal of economics (Vienna, Austria)</title><subject>Capital costs</subject><subject>Commercial production</subject><subject>Cost functions</subject><subject>Distance functions</subject><subject>Economic theory</subject><subject>Hyperplanes</subject><subject>Mathematical duality</subject><subject>Mathematical monotonicity</subject><subject>Mathematical theorems</subject><subject>Miscellanea</subject><subject>Production costs</subject><issn>0931-8658</issn><issn>1617-7134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>HYQOX</sourceid><sourceid>K30</sourceid><recordid>eNotjl1LwzAYhYMoWKc_QQh44Y2FvPlsLsfUKYxNcF6X2L6xLaupSYvs31uYcODcPDznnJEMNJjcgJDnJGNWQF5oVVySq5Q6xpjU2mRELukWfx_oGkOPY2wr-hZD8HTOe4ND42J9n-jj5A7teKT7BkPE_ppceHdIePPfC_Lx_LRfveSb3fp1tdzkXwDc5tyg0uBs7bzVoApkvOJOf2JtuHdQCc0LXxnjFfBKcSm1VAbnp144paUVC3J38g4x_EyYxrILU_yeJ8vZbxWAZnKmbk9Ul8YQyyG2vYvHUoKxomBK_AGkD0lO</recordid><startdate>19860101</startdate><enddate>19860101</enddate><creator>Hackman, Steven T.</creator><creator>Hackman, Sy. T.</creator><general>Springer-Verlag</general><general>J. Springer</general><scope>ABKTN</scope><scope>AIATT</scope><scope>FMSEA</scope><scope>GHEHK</scope><scope>HYQOX</scope><scope>JHMDA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>~P4</scope><scope>~P5</scope></search><sort><creationdate>19860101</creationdate><title>A New, Geometric Proof of Shephard's Duality Theorem</title><author>Hackman, Steven T. ; Hackman, Sy. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1129-27e561a9daf96158e02c2a6bed72fa1c3628fc77f512c52446457e093f3a56493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Capital costs</topic><topic>Commercial production</topic><topic>Cost functions</topic><topic>Distance functions</topic><topic>Economic theory</topic><topic>Hyperplanes</topic><topic>Mathematical duality</topic><topic>Mathematical monotonicity</topic><topic>Mathematical theorems</topic><topic>Miscellanea</topic><topic>Production costs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hackman, Steven T.</creatorcontrib><creatorcontrib>Hackman, Sy. T.</creatorcontrib><collection>Periodicals Archive Online JSTOR Titles</collection><collection>Periodicals Archive Online Collection 5 (2022)</collection><collection>Periodicals Index Online Segment 05</collection><collection>Periodicals Index Online Segment 08</collection><collection>ProQuest Historical Periodicals</collection><collection>Periodicals Index Online Segment 31</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>PAO Collection 5</collection><collection>Periodicals Archive Online Collection 5</collection><jtitle>Journal of economics (Vienna, Austria)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hackman, Steven T.</au><au>Hackman, Sy. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New, Geometric Proof of Shephard's Duality Theorem</atitle><jtitle>Journal of economics (Vienna, Austria)</jtitle><date>1986-01-01</date><risdate>1986</risdate><volume>46</volume><issue>3</issue><spage>299</spage><epage>304</epage><pages>299-304</pages><issn>0931-8658</issn><eissn>1617-7134</eissn><cop>Wien</cop><pub>Springer-Verlag</pub><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0931-8658
ispartof Journal of economics (Vienna, Austria), 1986-01, Vol.46 (3), p.299-304
issn 0931-8658
1617-7134
language eng
recordid cdi_proquest_journals_1299511604
source Periodicals Index Online; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Capital costs
Commercial production
Cost functions
Distance functions
Economic theory
Hyperplanes
Mathematical duality
Mathematical monotonicity
Mathematical theorems
Miscellanea
Production costs
title A New, Geometric Proof of Shephard's Duality Theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New,%20Geometric%20Proof%20of%20Shephard's%20Duality%20Theorem&rft.jtitle=Journal%20of%20economics%20(Vienna,%20Austria)&rft.au=Hackman,%20Steven%20T.&rft.date=1986-01-01&rft.volume=46&rft.issue=3&rft.spage=299&rft.epage=304&rft.pages=299-304&rft.issn=0931-8658&rft.eissn=1617-7134&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E41793805%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1299511604&rft_id=info:pmid/&rft_jstor_id=41793805&rfr_iscdi=true