Mechanical and Microstructural Characterization of Mullite and Mullite-SiC-Whisker and ZrO2-Toughened-Mullite-SiC-Whisker Composites

High‐purity mullite‐SiC‐whisker composites and mullite‐ZrO2‐SiC‐whisker composites were fabricated in situ by hot‐pressing using a matrix prepared by the alkoxide process. Varying degrees of ZrO2 stabilization were achieved by varying amounts of Y2O3 or MgO addition. Microstructural characterization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1988-06, Vol.71 (6), p.503-512
Hauptverfasser: RUH, ROBERT, MAZDIYASNI, K. S., MENDIRATTA, M. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512
container_issue 6
container_start_page 503
container_title Journal of the American Ceramic Society
container_volume 71
creator RUH, ROBERT
MAZDIYASNI, K. S.
MENDIRATTA, M. G.
description High‐purity mullite‐SiC‐whisker composites and mullite‐ZrO2‐SiC‐whisker composites were fabricated in situ by hot‐pressing using a matrix prepared by the alkoxide process. Varying degrees of ZrO2 stabilization were achieved by varying amounts of Y2O3 or MgO addition. Microstructural characterization was accomplished using SEM and energy dispersive analysis. Room‐temperature flexural strength and fracture toughness were determined as a function of SiC‐whisker content (0% to 30%) and ZrO2‐stabilizer content. The flexural strength of mullite varied with composition and was increased ∼50% by the addition of ∼30% ZrO2 phase. The flexural strength of mullite and mullite + 30% ZrO2 was increased ∼50% for 30% SiC‐whisker additions. The fracture toughness of mullite + 30% ZrO2 was nearly twice that of mullite. For a 30% SiC‐whisker addition, the fracture toughness of mullite was doubled, and the fracture toughness of mullite + 30% ZrO2 was increased 25% to 50%.
doi_str_mv 10.1111/j.1151-2916.1988.tb05902.x
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_1298380979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298380979</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3723-d5b519d98d676f516814dc8a9da7ae3876b31aa3d77e71da1e63885c9f5c6e183</originalsourceid><addsrcrecordid>eNptkUFP4zAQhS3EShSW_1ABVxc7rmP7hFAE3UVtEVoQEhdrajvUJSTFTkThzA9fd1Nx2rnM-M2nZ2keQieUjGiq81VqnOJM0XxElZSjdkG4Itlos4cGlO9W-2hACMmwkBk5QIcxrtIz4eMB-po5s4TaG6iGUNvhzJvQxDZ0pu1C0oolBDCtC_4TWt_Uw6Yczrqq8q3r-X7Gf3yBH5c-vrjwT38Ktxm-b7rnpaudxf_DiuZ13cSkxp_oRwlVdMe7foQerq_ui194ejv5XVxOsWciY9jyBafKKmlzkZec5pKOrZGgLAhwTIp8wSgAs0I4QS1QlzMpuVElN7mjkh2h0953HZq3zsVWr5ou1OlLTTMlmSRKqESd7SiI6SxlgNr4qNfBv0L40CIhZDxO2EWPvfvKfXyvKdHbZPRKb5PR2_PrbTJ6l4ze6JvL4ooTlhxw7-Bj6zbfDhBedC6Y4PpxPtF3ilA-E3N9x_4C81uVSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298380979</pqid></control><display><type>article</type><title>Mechanical and Microstructural Characterization of Mullite and Mullite-SiC-Whisker and ZrO2-Toughened-Mullite-SiC-Whisker Composites</title><source>Wiley Journals</source><source>Periodicals Index Online</source><creator>RUH, ROBERT ; MAZDIYASNI, K. S. ; MENDIRATTA, M. G.</creator><creatorcontrib>RUH, ROBERT ; MAZDIYASNI, K. S. ; MENDIRATTA, M. G.</creatorcontrib><description>High‐purity mullite‐SiC‐whisker composites and mullite‐ZrO2‐SiC‐whisker composites were fabricated in situ by hot‐pressing using a matrix prepared by the alkoxide process. Varying degrees of ZrO2 stabilization were achieved by varying amounts of Y2O3 or MgO addition. Microstructural characterization was accomplished using SEM and energy dispersive analysis. Room‐temperature flexural strength and fracture toughness were determined as a function of SiC‐whisker content (0% to 30%) and ZrO2‐stabilizer content. The flexural strength of mullite varied with composition and was increased ∼50% by the addition of ∼30% ZrO2 phase. The flexural strength of mullite and mullite + 30% ZrO2 was increased ∼50% for 30% SiC‐whisker additions. The fracture toughness of mullite + 30% ZrO2 was nearly twice that of mullite. For a 30% SiC‐whisker addition, the fracture toughness of mullite was doubled, and the fracture toughness of mullite + 30% ZrO2 was increased 25% to 50%.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1988.tb05902.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Chemical industry and chemicals ; Exact sciences and technology ; Miscellaneous</subject><ispartof>Journal of the American Ceramic Society, 1988-06, Vol.71 (6), p.503-512</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1988.tb05902.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1988.tb05902.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27869,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7793044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RUH, ROBERT</creatorcontrib><creatorcontrib>MAZDIYASNI, K. S.</creatorcontrib><creatorcontrib>MENDIRATTA, M. G.</creatorcontrib><title>Mechanical and Microstructural Characterization of Mullite and Mullite-SiC-Whisker and ZrO2-Toughened-Mullite-SiC-Whisker Composites</title><title>Journal of the American Ceramic Society</title><description>High‐purity mullite‐SiC‐whisker composites and mullite‐ZrO2‐SiC‐whisker composites were fabricated in situ by hot‐pressing using a matrix prepared by the alkoxide process. Varying degrees of ZrO2 stabilization were achieved by varying amounts of Y2O3 or MgO addition. Microstructural characterization was accomplished using SEM and energy dispersive analysis. Room‐temperature flexural strength and fracture toughness were determined as a function of SiC‐whisker content (0% to 30%) and ZrO2‐stabilizer content. The flexural strength of mullite varied with composition and was increased ∼50% by the addition of ∼30% ZrO2 phase. The flexural strength of mullite and mullite + 30% ZrO2 was increased ∼50% for 30% SiC‐whisker additions. The fracture toughness of mullite + 30% ZrO2 was nearly twice that of mullite. For a 30% SiC‐whisker addition, the fracture toughness of mullite was doubled, and the fracture toughness of mullite + 30% ZrO2 was increased 25% to 50%.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Chemical industry and chemicals</subject><subject>Exact sciences and technology</subject><subject>Miscellaneous</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNptkUFP4zAQhS3EShSW_1ABVxc7rmP7hFAE3UVtEVoQEhdrajvUJSTFTkThzA9fd1Nx2rnM-M2nZ2keQieUjGiq81VqnOJM0XxElZSjdkG4Itlos4cGlO9W-2hACMmwkBk5QIcxrtIz4eMB-po5s4TaG6iGUNvhzJvQxDZ0pu1C0oolBDCtC_4TWt_Uw6Yczrqq8q3r-X7Gf3yBH5c-vrjwT38Ktxm-b7rnpaudxf_DiuZ13cSkxp_oRwlVdMe7foQerq_ui194ejv5XVxOsWciY9jyBafKKmlzkZec5pKOrZGgLAhwTIp8wSgAs0I4QS1QlzMpuVElN7mjkh2h0953HZq3zsVWr5ou1OlLTTMlmSRKqESd7SiI6SxlgNr4qNfBv0L40CIhZDxO2EWPvfvKfXyvKdHbZPRKb5PR2_PrbTJ6l4ze6JvL4ooTlhxw7-Bj6zbfDhBedC6Y4PpxPtF3ilA-E3N9x_4C81uVSA</recordid><startdate>198806</startdate><enddate>198806</enddate><creator>RUH, ROBERT</creator><creator>MAZDIYASNI, K. S.</creator><creator>MENDIRATTA, M. G.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>198806</creationdate><title>Mechanical and Microstructural Characterization of Mullite and Mullite-SiC-Whisker and ZrO2-Toughened-Mullite-SiC-Whisker Composites</title><author>RUH, ROBERT ; MAZDIYASNI, K. S. ; MENDIRATTA, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3723-d5b519d98d676f516814dc8a9da7ae3876b31aa3d77e71da1e63885c9f5c6e183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Chemical industry and chemicals</topic><topic>Exact sciences and technology</topic><topic>Miscellaneous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RUH, ROBERT</creatorcontrib><creatorcontrib>MAZDIYASNI, K. S.</creatorcontrib><creatorcontrib>MENDIRATTA, M. G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RUH, ROBERT</au><au>MAZDIYASNI, K. S.</au><au>MENDIRATTA, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and Microstructural Characterization of Mullite and Mullite-SiC-Whisker and ZrO2-Toughened-Mullite-SiC-Whisker Composites</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1988-06</date><risdate>1988</risdate><volume>71</volume><issue>6</issue><spage>503</spage><epage>512</epage><pages>503-512</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>High‐purity mullite‐SiC‐whisker composites and mullite‐ZrO2‐SiC‐whisker composites were fabricated in situ by hot‐pressing using a matrix prepared by the alkoxide process. Varying degrees of ZrO2 stabilization were achieved by varying amounts of Y2O3 or MgO addition. Microstructural characterization was accomplished using SEM and energy dispersive analysis. Room‐temperature flexural strength and fracture toughness were determined as a function of SiC‐whisker content (0% to 30%) and ZrO2‐stabilizer content. The flexural strength of mullite varied with composition and was increased ∼50% by the addition of ∼30% ZrO2 phase. The flexural strength of mullite and mullite + 30% ZrO2 was increased ∼50% for 30% SiC‐whisker additions. The fracture toughness of mullite + 30% ZrO2 was nearly twice that of mullite. For a 30% SiC‐whisker addition, the fracture toughness of mullite was doubled, and the fracture toughness of mullite + 30% ZrO2 was increased 25% to 50%.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1988.tb05902.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1988-06, Vol.71 (6), p.503-512
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_1298380979
source Wiley Journals; Periodicals Index Online
subjects Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Chemical industry and chemicals
Exact sciences and technology
Miscellaneous
title Mechanical and Microstructural Characterization of Mullite and Mullite-SiC-Whisker and ZrO2-Toughened-Mullite-SiC-Whisker Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20Microstructural%20Characterization%20of%20Mullite%20and%20Mullite-SiC-Whisker%20and%20ZrO2-Toughened-Mullite-SiC-Whisker%20Composites&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=RUH,%20ROBERT&rft.date=1988-06&rft.volume=71&rft.issue=6&rft.spage=503&rft.epage=512&rft.pages=503-512&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1988.tb05902.x&rft_dat=%3Cproquest_pasca%3E1298380979%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298380979&rft_id=info:pmid/&rfr_iscdi=true