An Electrochemical Theory for Oxygen Reboil

Oxygen reboil often occurs when glass is melted in air in platinum containers. Oxygen blisters develop even when well‐fined glass is remelted under similar conditions. Experiments show that this reboil is prevented or greatly reduced by: (1) Eliminating electron conductors from the system, (2) remov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1966-10, Vol.49 (10), p.559-562
Hauptverfasser: COWAN, J. H., BUEHL, W. M., HUTCHINS III, J. R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue 10
container_start_page 559
container_title Journal of the American Ceramic Society
container_volume 49
creator COWAN, J. H.
BUEHL, W. M.
HUTCHINS III, J. R.
description Oxygen reboil often occurs when glass is melted in air in platinum containers. Oxygen blisters develop even when well‐fined glass is remelted under similar conditions. Experiments show that this reboil is prevented or greatly reduced by: (1) Eliminating electron conductors from the system, (2) removing oxygen from the atmosphere over the melt, (3) applying an external bucking potential, (4) reversing concentration gradients, or (5) removing temperature gradients. These results suggest that oxygen reboil, which occurs at a platinum‐glass interface, results from the discharge of a concentration cell or a thermal cell. The proposed mechanism is: O2−→½ O2+ 2e− at the anode and ½ O2+ 2e−→ O2− at the cathode, with electron transport in the platinum and, to complete the circuit, alkali ions in the glass.
doi_str_mv 10.1111/j.1151-2916.1966.tb13162.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1298380621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298380621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3859-852a2a34af79ba7c1f754e201898030ae6b7287d627a7915fa7d51c86c65178b3</originalsourceid><addsrcrecordid>eNqVkFtLw0AQhRdRsFb_Q9BHSdzZzd58kVprvRQLUvVx2aQbm5g2dZNi8u9NSPHdeTkMc84Z-BA6BxxAO1dZKwx8ooAHoDgPqggocBLUB2gAbH86RAOMMfGFJPgYnZRl1q6gZDhAl6ONN8ltXLkiXtl1GpvcW6xs4RovKZw3r5tPu_FebVSk-Sk6Skxe2rO9DtHb_WQxfvBn8-njeDTzYyqZ8iUjhhgamkSoyIgYEsFCSzBIJTHFxvJIECmWnAgjFLDEiCWDWPKYMxAyokN00fduXfG9s2Wls2LnNu1LDURJKjEn0Lque1fsirJ0NtFbl66NazRg3cHRme7g6I6A7uDoPRxdt-GbPvyT5rb5R1I_jcYTxlTb4PcNaVnZ-q_BuC_NBRVMf7xMtQjvbvEzJfqd_gLjhHiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298380621</pqid></control><display><type>article</type><title>An Electrochemical Theory for Oxygen Reboil</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Periodicals Index Online</source><creator>COWAN, J. H. ; BUEHL, W. M. ; HUTCHINS III, J. R.</creator><creatorcontrib>COWAN, J. H. ; BUEHL, W. M. ; HUTCHINS III, J. R.</creatorcontrib><description>Oxygen reboil often occurs when glass is melted in air in platinum containers. Oxygen blisters develop even when well‐fined glass is remelted under similar conditions. Experiments show that this reboil is prevented or greatly reduced by: (1) Eliminating electron conductors from the system, (2) removing oxygen from the atmosphere over the melt, (3) applying an external bucking potential, (4) reversing concentration gradients, or (5) removing temperature gradients. These results suggest that oxygen reboil, which occurs at a platinum‐glass interface, results from the discharge of a concentration cell or a thermal cell. The proposed mechanism is: O2−→½ O2+ 2e− at the anode and ½ O2+ 2e−→ O2− at the cathode, with electron transport in the platinum and, to complete the circuit, alkali ions in the glass.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1966.tb13162.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><ispartof>Journal of the American Ceramic Society, 1966-10, Vol.49 (10), p.559-562</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3859-852a2a34af79ba7c1f754e201898030ae6b7287d627a7915fa7d51c86c65178b3</citedby><cites>FETCH-LOGICAL-c3859-852a2a34af79ba7c1f754e201898030ae6b7287d627a7915fa7d51c86c65178b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1966.tb13162.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1966.tb13162.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27846,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>COWAN, J. H.</creatorcontrib><creatorcontrib>BUEHL, W. M.</creatorcontrib><creatorcontrib>HUTCHINS III, J. R.</creatorcontrib><title>An Electrochemical Theory for Oxygen Reboil</title><title>Journal of the American Ceramic Society</title><description>Oxygen reboil often occurs when glass is melted in air in platinum containers. Oxygen blisters develop even when well‐fined glass is remelted under similar conditions. Experiments show that this reboil is prevented or greatly reduced by: (1) Eliminating electron conductors from the system, (2) removing oxygen from the atmosphere over the melt, (3) applying an external bucking potential, (4) reversing concentration gradients, or (5) removing temperature gradients. These results suggest that oxygen reboil, which occurs at a platinum‐glass interface, results from the discharge of a concentration cell or a thermal cell. The proposed mechanism is: O2−→½ O2+ 2e− at the anode and ½ O2+ 2e−→ O2− at the cathode, with electron transport in the platinum and, to complete the circuit, alkali ions in the glass.</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1966</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkFtLw0AQhRdRsFb_Q9BHSdzZzd58kVprvRQLUvVx2aQbm5g2dZNi8u9NSPHdeTkMc84Z-BA6BxxAO1dZKwx8ooAHoDgPqggocBLUB2gAbH86RAOMMfGFJPgYnZRl1q6gZDhAl6ONN8ltXLkiXtl1GpvcW6xs4RovKZw3r5tPu_FebVSk-Sk6Skxe2rO9DtHb_WQxfvBn8-njeDTzYyqZ8iUjhhgamkSoyIgYEsFCSzBIJTHFxvJIECmWnAgjFLDEiCWDWPKYMxAyokN00fduXfG9s2Wls2LnNu1LDURJKjEn0Lque1fsirJ0NtFbl66NazRg3cHRme7g6I6A7uDoPRxdt-GbPvyT5rb5R1I_jcYTxlTb4PcNaVnZ-q_BuC_NBRVMf7xMtQjvbvEzJfqd_gLjhHiM</recordid><startdate>196610</startdate><enddate>196610</enddate><creator>COWAN, J. H.</creator><creator>BUEHL, W. M.</creator><creator>HUTCHINS III, J. R.</creator><general>Blackwell Publishing Ltd</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>196610</creationdate><title>An Electrochemical Theory for Oxygen Reboil</title><author>COWAN, J. H. ; BUEHL, W. M. ; HUTCHINS III, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3859-852a2a34af79ba7c1f754e201898030ae6b7287d627a7915fa7d51c86c65178b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1966</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COWAN, J. H.</creatorcontrib><creatorcontrib>BUEHL, W. M.</creatorcontrib><creatorcontrib>HUTCHINS III, J. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COWAN, J. H.</au><au>BUEHL, W. M.</au><au>HUTCHINS III, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Electrochemical Theory for Oxygen Reboil</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1966-10</date><risdate>1966</risdate><volume>49</volume><issue>10</issue><spage>559</spage><epage>562</epage><pages>559-562</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Oxygen reboil often occurs when glass is melted in air in platinum containers. Oxygen blisters develop even when well‐fined glass is remelted under similar conditions. Experiments show that this reboil is prevented or greatly reduced by: (1) Eliminating electron conductors from the system, (2) removing oxygen from the atmosphere over the melt, (3) applying an external bucking potential, (4) reversing concentration gradients, or (5) removing temperature gradients. These results suggest that oxygen reboil, which occurs at a platinum‐glass interface, results from the discharge of a concentration cell or a thermal cell. The proposed mechanism is: O2−→½ O2+ 2e− at the anode and ½ O2+ 2e−→ O2− at the cathode, with electron transport in the platinum and, to complete the circuit, alkali ions in the glass.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1966.tb13162.x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1966-10, Vol.49 (10), p.559-562
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_1298380621
source Wiley Online Library Journals Frontfile Complete; Periodicals Index Online
title An Electrochemical Theory for Oxygen Reboil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Electrochemical%20Theory%20for%20Oxygen%20Reboil&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=COWAN,%20J.%20H.&rft.date=1966-10&rft.volume=49&rft.issue=10&rft.spage=559&rft.epage=562&rft.pages=559-562&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1151-2916.1966.tb13162.x&rft_dat=%3Cproquest_cross%3E1298380621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298380621&rft_id=info:pmid/&rfr_iscdi=true