An Electrochemical Theory for Oxygen Reboil
Oxygen reboil often occurs when glass is melted in air in platinum containers. Oxygen blisters develop even when well‐fined glass is remelted under similar conditions. Experiments show that this reboil is prevented or greatly reduced by: (1) Eliminating electron conductors from the system, (2) remov...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 1966-10, Vol.49 (10), p.559-562 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 562 |
---|---|
container_issue | 10 |
container_start_page | 559 |
container_title | Journal of the American Ceramic Society |
container_volume | 49 |
creator | COWAN, J. H. BUEHL, W. M. HUTCHINS III, J. R. |
description | Oxygen reboil often occurs when glass is melted in air in platinum containers. Oxygen blisters develop even when well‐fined glass is remelted under similar conditions. Experiments show that this reboil is prevented or greatly reduced by: (1) Eliminating electron conductors from the system, (2) removing oxygen from the atmosphere over the melt, (3) applying an external bucking potential, (4) reversing concentration gradients, or (5) removing temperature gradients. These results suggest that oxygen reboil, which occurs at a platinum‐glass interface, results from the discharge of a concentration cell or a thermal cell. The proposed mechanism is: O2−→½ O2+ 2e− at the anode and ½ O2+ 2e−→ O2− at the cathode, with electron transport in the platinum and, to complete the circuit, alkali ions in the glass. |
doi_str_mv | 10.1111/j.1151-2916.1966.tb13162.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1298380621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298380621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3859-852a2a34af79ba7c1f754e201898030ae6b7287d627a7915fa7d51c86c65178b3</originalsourceid><addsrcrecordid>eNqVkFtLw0AQhRdRsFb_Q9BHSdzZzd58kVprvRQLUvVx2aQbm5g2dZNi8u9NSPHdeTkMc84Z-BA6BxxAO1dZKwx8ooAHoDgPqggocBLUB2gAbH86RAOMMfGFJPgYnZRl1q6gZDhAl6ONN8ltXLkiXtl1GpvcW6xs4RovKZw3r5tPu_FebVSk-Sk6Skxe2rO9DtHb_WQxfvBn8-njeDTzYyqZ8iUjhhgamkSoyIgYEsFCSzBIJTHFxvJIECmWnAgjFLDEiCWDWPKYMxAyokN00fduXfG9s2Wls2LnNu1LDURJKjEn0Lque1fsirJ0NtFbl66NazRg3cHRme7g6I6A7uDoPRxdt-GbPvyT5rb5R1I_jcYTxlTb4PcNaVnZ-q_BuC_NBRVMf7xMtQjvbvEzJfqd_gLjhHiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298380621</pqid></control><display><type>article</type><title>An Electrochemical Theory for Oxygen Reboil</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Periodicals Index Online</source><creator>COWAN, J. H. ; BUEHL, W. M. ; HUTCHINS III, J. R.</creator><creatorcontrib>COWAN, J. H. ; BUEHL, W. M. ; HUTCHINS III, J. R.</creatorcontrib><description>Oxygen reboil often occurs when glass is melted in air in platinum containers. Oxygen blisters develop even when well‐fined glass is remelted under similar conditions. Experiments show that this reboil is prevented or greatly reduced by: (1) Eliminating electron conductors from the system, (2) removing oxygen from the atmosphere over the melt, (3) applying an external bucking potential, (4) reversing concentration gradients, or (5) removing temperature gradients. These results suggest that oxygen reboil, which occurs at a platinum‐glass interface, results from the discharge of a concentration cell or a thermal cell. The proposed mechanism is: O2−→½ O2+ 2e− at the anode and ½ O2+ 2e−→ O2− at the cathode, with electron transport in the platinum and, to complete the circuit, alkali ions in the glass.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1966.tb13162.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><ispartof>Journal of the American Ceramic Society, 1966-10, Vol.49 (10), p.559-562</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3859-852a2a34af79ba7c1f754e201898030ae6b7287d627a7915fa7d51c86c65178b3</citedby><cites>FETCH-LOGICAL-c3859-852a2a34af79ba7c1f754e201898030ae6b7287d627a7915fa7d51c86c65178b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1966.tb13162.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1966.tb13162.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27846,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>COWAN, J. H.</creatorcontrib><creatorcontrib>BUEHL, W. M.</creatorcontrib><creatorcontrib>HUTCHINS III, J. R.</creatorcontrib><title>An Electrochemical Theory for Oxygen Reboil</title><title>Journal of the American Ceramic Society</title><description>Oxygen reboil often occurs when glass is melted in air in platinum containers. Oxygen blisters develop even when well‐fined glass is remelted under similar conditions. Experiments show that this reboil is prevented or greatly reduced by: (1) Eliminating electron conductors from the system, (2) removing oxygen from the atmosphere over the melt, (3) applying an external bucking potential, (4) reversing concentration gradients, or (5) removing temperature gradients. These results suggest that oxygen reboil, which occurs at a platinum‐glass interface, results from the discharge of a concentration cell or a thermal cell. The proposed mechanism is: O2−→½ O2+ 2e− at the anode and ½ O2+ 2e−→ O2− at the cathode, with electron transport in the platinum and, to complete the circuit, alkali ions in the glass.</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1966</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkFtLw0AQhRdRsFb_Q9BHSdzZzd58kVprvRQLUvVx2aQbm5g2dZNi8u9NSPHdeTkMc84Z-BA6BxxAO1dZKwx8ooAHoDgPqggocBLUB2gAbH86RAOMMfGFJPgYnZRl1q6gZDhAl6ONN8ltXLkiXtl1GpvcW6xs4RovKZw3r5tPu_FebVSk-Sk6Skxe2rO9DtHb_WQxfvBn8-njeDTzYyqZ8iUjhhgamkSoyIgYEsFCSzBIJTHFxvJIECmWnAgjFLDEiCWDWPKYMxAyokN00fduXfG9s2Wls2LnNu1LDURJKjEn0Lque1fsirJ0NtFbl66NazRg3cHRme7g6I6A7uDoPRxdt-GbPvyT5rb5R1I_jcYTxlTb4PcNaVnZ-q_BuC_NBRVMf7xMtQjvbvEzJfqd_gLjhHiM</recordid><startdate>196610</startdate><enddate>196610</enddate><creator>COWAN, J. H.</creator><creator>BUEHL, W. M.</creator><creator>HUTCHINS III, J. R.</creator><general>Blackwell Publishing Ltd</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>196610</creationdate><title>An Electrochemical Theory for Oxygen Reboil</title><author>COWAN, J. H. ; BUEHL, W. M. ; HUTCHINS III, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3859-852a2a34af79ba7c1f754e201898030ae6b7287d627a7915fa7d51c86c65178b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1966</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COWAN, J. H.</creatorcontrib><creatorcontrib>BUEHL, W. M.</creatorcontrib><creatorcontrib>HUTCHINS III, J. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COWAN, J. H.</au><au>BUEHL, W. M.</au><au>HUTCHINS III, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Electrochemical Theory for Oxygen Reboil</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1966-10</date><risdate>1966</risdate><volume>49</volume><issue>10</issue><spage>559</spage><epage>562</epage><pages>559-562</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Oxygen reboil often occurs when glass is melted in air in platinum containers. Oxygen blisters develop even when well‐fined glass is remelted under similar conditions. Experiments show that this reboil is prevented or greatly reduced by: (1) Eliminating electron conductors from the system, (2) removing oxygen from the atmosphere over the melt, (3) applying an external bucking potential, (4) reversing concentration gradients, or (5) removing temperature gradients. These results suggest that oxygen reboil, which occurs at a platinum‐glass interface, results from the discharge of a concentration cell or a thermal cell. The proposed mechanism is: O2−→½ O2+ 2e− at the anode and ½ O2+ 2e−→ O2− at the cathode, with electron transport in the platinum and, to complete the circuit, alkali ions in the glass.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1966.tb13162.x</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 1966-10, Vol.49 (10), p.559-562 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_1298380621 |
source | Wiley Online Library Journals Frontfile Complete; Periodicals Index Online |
title | An Electrochemical Theory for Oxygen Reboil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Electrochemical%20Theory%20for%20Oxygen%20Reboil&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=COWAN,%20J.%20H.&rft.date=1966-10&rft.volume=49&rft.issue=10&rft.spage=559&rft.epage=562&rft.pages=559-562&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1151-2916.1966.tb13162.x&rft_dat=%3Cproquest_cross%3E1298380621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298380621&rft_id=info:pmid/&rfr_iscdi=true |