The System PbO-Chromium Oxide in Air
Phase relations in the system PbO‐chromium oxide were determined in air at high temperatures and are considered in terms of the PbO‐Cr2O3−O2 ternary because of reactions with atmospheric oxygen. Although not necessarily binary at all temperatures, four established subsystems characterize the air equ...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 1968-12, Vol.51 (12), p.716-719 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 719 |
---|---|
container_issue | 12 |
container_start_page | 716 |
container_title | Journal of the American Ceramic Society |
container_volume | 51 |
creator | NEGAS, TAKI |
description | Phase relations in the system PbO‐chromium oxide were determined in air at high temperatures and are considered in terms of the PbO‐Cr2O3−O2 ternary because of reactions with atmospheric oxygen. Although not necessarily binary at all temperatures, four established subsystems characterize the air equilibria and indicate oxidation‐reduction of chromium. The PbO‐PbCrO4 join contains the compounds Pb5CrO3 and Pb5CrO8 and consists of two portions, PbO‐Pb2CrO6 and Pb2CrO5−PbCrO4 The former is binary at all temperatures studied, while the latter exists only below 753° C because of the decomposition of PbCrO4 at 753°C to Pb2CrO5 and Cr2O3 with oxygen evolution. Similarly, the join PbCrO4−Cr2O3 exists only below 753°C yielding to Pb2CrO3−Cr2O3 equilibria above this temperature. |
doi_str_mv | 10.1111/j.1151-2916.1968.tb15935.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1298375249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298375249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4496-e323179935ba6942dbfdf5c6b6481c350c70eaa9343f139ad2da8a2ad5e21d43</originalsourceid><addsrcrecordid>eNqVkE1Lw0AQhhdRsFb_Q1CvifudrBcpsbZKsUUDehs2yYYmNm3dtJj-ezekeHcuwzDzvjPzIHRNcEBc3FUuCeJTRWRAlIyCXUqEYiJoT9CAiGPrFA0wxtQPI4rP0UXTVK4kKuIDdJssjfd-aHam9hbp3I-XdlOX-9qbt2VuvHLtjUp7ic4KvWrM1TEPUfI0TuKpP5tPnuPRzM84V9I3jDISKrc-1VJxmqdFXohMppJHJGMCZyE2WivGWUGY0jnNdaSpzoWhJOdsiG56263dfO9Ns4Nqs7drtxEIVRELBeXKTd33U5ndNI01BWxtWWt7AIKhgwIVdFCg-xw6KHCEAq0TP_Tin3JlDv9QwssoHodEOge_dygds_bPQdsvkKE7ET5eJyCTxedkGr_BI_sFdD52dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298375249</pqid></control><display><type>article</type><title>The System PbO-Chromium Oxide in Air</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Periodicals Index Online</source><creator>NEGAS, TAKI</creator><creatorcontrib>NEGAS, TAKI</creatorcontrib><description>Phase relations in the system PbO‐chromium oxide were determined in air at high temperatures and are considered in terms of the PbO‐Cr2O3−O2 ternary because of reactions with atmospheric oxygen. Although not necessarily binary at all temperatures, four established subsystems characterize the air equilibria and indicate oxidation‐reduction of chromium. The PbO‐PbCrO4 join contains the compounds Pb5CrO3 and Pb5CrO8 and consists of two portions, PbO‐Pb2CrO6 and Pb2CrO5−PbCrO4 The former is binary at all temperatures studied, while the latter exists only below 753° C because of the decomposition of PbCrO4 at 753°C to Pb2CrO5 and Cr2O3 with oxygen evolution. Similarly, the join PbCrO4−Cr2O3 exists only below 753°C yielding to Pb2CrO3−Cr2O3 equilibria above this temperature.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1968.tb15935.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><ispartof>Journal of the American Ceramic Society, 1968-12, Vol.51 (12), p.716-719</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4496-e323179935ba6942dbfdf5c6b6481c350c70eaa9343f139ad2da8a2ad5e21d43</citedby><cites>FETCH-LOGICAL-c4496-e323179935ba6942dbfdf5c6b6481c350c70eaa9343f139ad2da8a2ad5e21d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1968.tb15935.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1968.tb15935.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27848,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>NEGAS, TAKI</creatorcontrib><title>The System PbO-Chromium Oxide in Air</title><title>Journal of the American Ceramic Society</title><description>Phase relations in the system PbO‐chromium oxide were determined in air at high temperatures and are considered in terms of the PbO‐Cr2O3−O2 ternary because of reactions with atmospheric oxygen. Although not necessarily binary at all temperatures, four established subsystems characterize the air equilibria and indicate oxidation‐reduction of chromium. The PbO‐PbCrO4 join contains the compounds Pb5CrO3 and Pb5CrO8 and consists of two portions, PbO‐Pb2CrO6 and Pb2CrO5−PbCrO4 The former is binary at all temperatures studied, while the latter exists only below 753° C because of the decomposition of PbCrO4 at 753°C to Pb2CrO5 and Cr2O3 with oxygen evolution. Similarly, the join PbCrO4−Cr2O3 exists only below 753°C yielding to Pb2CrO3−Cr2O3 equilibria above this temperature.</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1968</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkE1Lw0AQhhdRsFb_Q1CvifudrBcpsbZKsUUDehs2yYYmNm3dtJj-ezekeHcuwzDzvjPzIHRNcEBc3FUuCeJTRWRAlIyCXUqEYiJoT9CAiGPrFA0wxtQPI4rP0UXTVK4kKuIDdJssjfd-aHam9hbp3I-XdlOX-9qbt2VuvHLtjUp7ic4KvWrM1TEPUfI0TuKpP5tPnuPRzM84V9I3jDISKrc-1VJxmqdFXohMppJHJGMCZyE2WivGWUGY0jnNdaSpzoWhJOdsiG56263dfO9Ns4Nqs7drtxEIVRELBeXKTd33U5ndNI01BWxtWWt7AIKhgwIVdFCg-xw6KHCEAq0TP_Tin3JlDv9QwssoHodEOge_dygds_bPQdsvkKE7ET5eJyCTxedkGr_BI_sFdD52dw</recordid><startdate>196812</startdate><enddate>196812</enddate><creator>NEGAS, TAKI</creator><general>Blackwell Publishing Ltd</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>196812</creationdate><title>The System PbO-Chromium Oxide in Air</title><author>NEGAS, TAKI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4496-e323179935ba6942dbfdf5c6b6481c350c70eaa9343f139ad2da8a2ad5e21d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1968</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NEGAS, TAKI</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NEGAS, TAKI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The System PbO-Chromium Oxide in Air</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1968-12</date><risdate>1968</risdate><volume>51</volume><issue>12</issue><spage>716</spage><epage>719</epage><pages>716-719</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Phase relations in the system PbO‐chromium oxide were determined in air at high temperatures and are considered in terms of the PbO‐Cr2O3−O2 ternary because of reactions with atmospheric oxygen. Although not necessarily binary at all temperatures, four established subsystems characterize the air equilibria and indicate oxidation‐reduction of chromium. The PbO‐PbCrO4 join contains the compounds Pb5CrO3 and Pb5CrO8 and consists of two portions, PbO‐Pb2CrO6 and Pb2CrO5−PbCrO4 The former is binary at all temperatures studied, while the latter exists only below 753° C because of the decomposition of PbCrO4 at 753°C to Pb2CrO5 and Cr2O3 with oxygen evolution. Similarly, the join PbCrO4−Cr2O3 exists only below 753°C yielding to Pb2CrO3−Cr2O3 equilibria above this temperature.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1968.tb15935.x</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 1968-12, Vol.51 (12), p.716-719 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_1298375249 |
source | Wiley Online Library - AutoHoldings Journals; Periodicals Index Online |
title | The System PbO-Chromium Oxide in Air |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20System%20PbO-Chromium%20Oxide%20in%20Air&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=NEGAS,%20TAKI&rft.date=1968-12&rft.volume=51&rft.issue=12&rft.spage=716&rft.epage=719&rft.pages=716-719&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1151-2916.1968.tb15935.x&rft_dat=%3Cproquest_cross%3E1298375249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298375249&rft_id=info:pmid/&rfr_iscdi=true |