Preparation of High-Density Si3N4 by a Gas-Pressure Sintering Process

Si3N4 compacts, containing ≅7 wt% of both BeSiN2 and SiO2 as densification aids, can be reproducibly sintered to relative densities >99% by a gas‐pressure sintering process. Nearly all densification takes place via liquid‐phase sintering of transformed β‐Si3N4 grains at T=1800° to 2000°C. Compact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1981-12, Vol.64 (12), p.725-730
1. Verfasser: GRESKOVICH, C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 12
container_start_page 725
container_title Journal of the American Ceramic Society
container_volume 64
creator GRESKOVICH, C.
description Si3N4 compacts, containing ≅7 wt% of both BeSiN2 and SiO2 as densification aids, can be reproducibly sintered to relative densities >99% by a gas‐pressure sintering process. Nearly all densification takes place via liquid‐phase sintering of transformed β‐Si3N4 grains at T=1800° to 2000°C. Compacts with high density are produced by first sintering to the closed‐pore stage (≅92% relative density) in 2.1 MPa (20 atm) of N2 pressure at 2000°C and then increasing the N2 pressure to 7.1 MPa (70 atm) where rapid densification proceeds at T= 1800° to 2000°C. The experimental density results are interpreted in terms of theoretical arguments concerning the growth (coalescence) of gas‐filled pores and gas solubility effects. Complex chemical reactions apparently occur at high temperatures and are probably responsible for incomplete understanding of some of the experimental data.
doi_str_mv 10.1111/j.1151-2916.1981.tb15895.x
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1298372989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298372989</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3415-38684a17929882d9c951b0e99465936eb129e9a3d6f0b6425fadd11880b7b2a73</originalsourceid><addsrcrecordid>eNo9kNtOwzAMhiMEEmPwDhVcp-TQnK7QNHZgGmMSIC6jdE1HxmhH0on17Um1CV_Ysv37t_QBcItRimPcb2JhGBKFeYqVxGmTYyYVSw9noIfZaXUOegghAoUk6BJchbCJbZRnPTBaersz3jSurpK6TKZu_QkfbRVc0yavji6yJG8Tk0xMgFEawt7bOK8a6121Tpa-XsXhNbgozTbYm1Ptg_fx6G04hfOXydNwMIeOZphBKrnMDBaKKClJoVaK4RxZpTLOFOU2x0RZZWjBS5TzjLDSFAXGUqJc5MQI2gd3R9-dr3_2NjR6U-99FV_qeCqpiElF1cNR9eu2ttU7776NbzVGumOmN7pjpjswumOmT8z0Qc8Gw5EgLDrAo4MLjT38Oxj_pbmggumPxUSz8TPnCzzTS_oHi01vjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298372989</pqid></control><display><type>article</type><title>Preparation of High-Density Si3N4 by a Gas-Pressure Sintering Process</title><source>Wiley Online Library</source><source>Periodicals Index Online</source><creator>GRESKOVICH, C.</creator><creatorcontrib>GRESKOVICH, C.</creatorcontrib><description>Si3N4 compacts, containing ≅7 wt% of both BeSiN2 and SiO2 as densification aids, can be reproducibly sintered to relative densities &gt;99% by a gas‐pressure sintering process. Nearly all densification takes place via liquid‐phase sintering of transformed β‐Si3N4 grains at T=1800° to 2000°C. Compacts with high density are produced by first sintering to the closed‐pore stage (≅92% relative density) in 2.1 MPa (20 atm) of N2 pressure at 2000°C and then increasing the N2 pressure to 7.1 MPa (70 atm) where rapid densification proceeds at T= 1800° to 2000°C. The experimental density results are interpreted in terms of theoretical arguments concerning the growth (coalescence) of gas‐filled pores and gas solubility effects. Complex chemical reactions apparently occur at high temperatures and are probably responsible for incomplete understanding of some of the experimental data.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1981.tb15895.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><ispartof>Journal of the American Ceramic Society, 1981-12, Vol.64 (12), p.725-730</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1981.tb15895.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1981.tb15895.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27868,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>GRESKOVICH, C.</creatorcontrib><title>Preparation of High-Density Si3N4 by a Gas-Pressure Sintering Process</title><title>Journal of the American Ceramic Society</title><description>Si3N4 compacts, containing ≅7 wt% of both BeSiN2 and SiO2 as densification aids, can be reproducibly sintered to relative densities &gt;99% by a gas‐pressure sintering process. Nearly all densification takes place via liquid‐phase sintering of transformed β‐Si3N4 grains at T=1800° to 2000°C. Compacts with high density are produced by first sintering to the closed‐pore stage (≅92% relative density) in 2.1 MPa (20 atm) of N2 pressure at 2000°C and then increasing the N2 pressure to 7.1 MPa (70 atm) where rapid densification proceeds at T= 1800° to 2000°C. The experimental density results are interpreted in terms of theoretical arguments concerning the growth (coalescence) of gas‐filled pores and gas solubility effects. Complex chemical reactions apparently occur at high temperatures and are probably responsible for incomplete understanding of some of the experimental data.</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNo9kNtOwzAMhiMEEmPwDhVcp-TQnK7QNHZgGmMSIC6jdE1HxmhH0on17Um1CV_Ysv37t_QBcItRimPcb2JhGBKFeYqVxGmTYyYVSw9noIfZaXUOegghAoUk6BJchbCJbZRnPTBaersz3jSurpK6TKZu_QkfbRVc0yavji6yJG8Tk0xMgFEawt7bOK8a6121Tpa-XsXhNbgozTbYm1Ptg_fx6G04hfOXydNwMIeOZphBKrnMDBaKKClJoVaK4RxZpTLOFOU2x0RZZWjBS5TzjLDSFAXGUqJc5MQI2gd3R9-dr3_2NjR6U-99FV_qeCqpiElF1cNR9eu2ttU7776NbzVGumOmN7pjpjswumOmT8z0Qc8Gw5EgLDrAo4MLjT38Oxj_pbmggumPxUSz8TPnCzzTS_oHi01vjA</recordid><startdate>198112</startdate><enddate>198112</enddate><creator>GRESKOVICH, C.</creator><general>Blackwell Publishing Ltd</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>198112</creationdate><title>Preparation of High-Density Si3N4 by a Gas-Pressure Sintering Process</title><author>GRESKOVICH, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3415-38684a17929882d9c951b0e99465936eb129e9a3d6f0b6425fadd11880b7b2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GRESKOVICH, C.</creatorcontrib><collection>Istex</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GRESKOVICH, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of High-Density Si3N4 by a Gas-Pressure Sintering Process</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1981-12</date><risdate>1981</risdate><volume>64</volume><issue>12</issue><spage>725</spage><epage>730</epage><pages>725-730</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Si3N4 compacts, containing ≅7 wt% of both BeSiN2 and SiO2 as densification aids, can be reproducibly sintered to relative densities &gt;99% by a gas‐pressure sintering process. Nearly all densification takes place via liquid‐phase sintering of transformed β‐Si3N4 grains at T=1800° to 2000°C. Compacts with high density are produced by first sintering to the closed‐pore stage (≅92% relative density) in 2.1 MPa (20 atm) of N2 pressure at 2000°C and then increasing the N2 pressure to 7.1 MPa (70 atm) where rapid densification proceeds at T= 1800° to 2000°C. The experimental density results are interpreted in terms of theoretical arguments concerning the growth (coalescence) of gas‐filled pores and gas solubility effects. Complex chemical reactions apparently occur at high temperatures and are probably responsible for incomplete understanding of some of the experimental data.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1981.tb15895.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1981-12, Vol.64 (12), p.725-730
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_1298372989
source Wiley Online Library; Periodicals Index Online
title Preparation of High-Density Si3N4 by a Gas-Pressure Sintering Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20High-Density%20Si3N4%20by%20a%20Gas-Pressure%20Sintering%20Process&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=GRESKOVICH,%20C.&rft.date=1981-12&rft.volume=64&rft.issue=12&rft.spage=725&rft.epage=730&rft.pages=725-730&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1151-2916.1981.tb15895.x&rft_dat=%3Cproquest_wiley%3E1298372989%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298372989&rft_id=info:pmid/&rfr_iscdi=true