Chemical Diffusion in Polycrystalline Al2O3
Chemical diffusion in poly crystalline α‐Al2O3 doped with Ti or Fe was studied through the movement of a color front on oxidation of reduced samples. The diffusion is faster in polycrystal‐line than in single‐crystal material. The oxygen pressure dependence of the rate of diffusion indicates that ne...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 1980-11, Vol.63 (11-12), p.613-619 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 619 |
---|---|
container_issue | 11-12 |
container_start_page | 613 |
container_title | Journal of the American Ceramic Society |
container_volume | 63 |
creator | WANG, H. A. KRÖGER, F. A. |
description | Chemical diffusion in poly crystalline α‐Al2O3 doped with Ti or Fe was studied through the movement of a color front on oxidation of reduced samples. The diffusion is faster in polycrystal‐line than in single‐crystal material. The oxygen pressure dependence of the rate of diffusion indicates that neutral interstitial oxygen is the major mobile species at the grain boundaries. A theory is presented which accounts for the data and explains the difference in the rates of oxidation and reduction and their dependence on oxygen pressure. Grain boundaries with precipitates of FeAl2O4 or TiAl2O5 appear to transport oxygen faster than clean boundaries. |
doi_str_mv | 10.1111/j.1151-2916.1980.tb09846.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1298370205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298370205</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3413-df78a8ec4b881226ce871a66655449ee0d34d0c81c4abf2dbfd3082e2b06a0b93</originalsourceid><addsrcrecordid>eNo9kE1Pg0AQhjdGE2v1PxA9GnD2g2U5mUpr1VTbg8akl8kCS1ykUIHG8u-FtHEuk8m8eSbzEHJNwaN93eV986nLQio9Girw2hhCJaS3PyEj6h9Xp2QEAMwNFINzctE0eT_2cTEit9GX2dhEF87UZtmusVXp2NJZVUWX1F3T6qKwpXEmBVvyS3KW6aIxV8c-Jh-Ps_foyV0s58_RZOFaLih30yxQWplExEpRxmRiVEC1lNL3hQiNgZSLFBJFE6HjjKVxlnJQzLAYpIY45GNyc-Bu6-pnZ5oW82pXl_1JpCxUPAAGfp-6P6R-bWE63NZ2o-sOKeBgBnMczODwPg5m8GgG9_gyiWaS8p7gHgi2ac3-n6Drb5QBD3z8fJvj9OE1WLH1Ctf8D9UOZ78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298370205</pqid></control><display><type>article</type><title>Chemical Diffusion in Polycrystalline Al2O3</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Periodicals Index Online</source><creator>WANG, H. A. ; KRÖGER, F. A.</creator><creatorcontrib>WANG, H. A. ; KRÖGER, F. A.</creatorcontrib><description>Chemical diffusion in poly crystalline α‐Al2O3 doped with Ti or Fe was studied through the movement of a color front on oxidation of reduced samples. The diffusion is faster in polycrystal‐line than in single‐crystal material. The oxygen pressure dependence of the rate of diffusion indicates that neutral interstitial oxygen is the major mobile species at the grain boundaries. A theory is presented which accounts for the data and explains the difference in the rates of oxidation and reduction and their dependence on oxygen pressure. Grain boundaries with precipitates of FeAl2O4 or TiAl2O5 appear to transport oxygen faster than clean boundaries.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1980.tb09846.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><ispartof>Journal of the American Ceramic Society, 1980-11, Vol.63 (11-12), p.613-619</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1980.tb09846.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1980.tb09846.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27846,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>WANG, H. A.</creatorcontrib><creatorcontrib>KRÖGER, F. A.</creatorcontrib><title>Chemical Diffusion in Polycrystalline Al2O3</title><title>Journal of the American Ceramic Society</title><description>Chemical diffusion in poly crystalline α‐Al2O3 doped with Ti or Fe was studied through the movement of a color front on oxidation of reduced samples. The diffusion is faster in polycrystal‐line than in single‐crystal material. The oxygen pressure dependence of the rate of diffusion indicates that neutral interstitial oxygen is the major mobile species at the grain boundaries. A theory is presented which accounts for the data and explains the difference in the rates of oxidation and reduction and their dependence on oxygen pressure. Grain boundaries with precipitates of FeAl2O4 or TiAl2O5 appear to transport oxygen faster than clean boundaries.</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNo9kE1Pg0AQhjdGE2v1PxA9GnD2g2U5mUpr1VTbg8akl8kCS1ykUIHG8u-FtHEuk8m8eSbzEHJNwaN93eV986nLQio9Girw2hhCJaS3PyEj6h9Xp2QEAMwNFINzctE0eT_2cTEit9GX2dhEF87UZtmusVXp2NJZVUWX1F3T6qKwpXEmBVvyS3KW6aIxV8c-Jh-Ps_foyV0s58_RZOFaLih30yxQWplExEpRxmRiVEC1lNL3hQiNgZSLFBJFE6HjjKVxlnJQzLAYpIY45GNyc-Bu6-pnZ5oW82pXl_1JpCxUPAAGfp-6P6R-bWE63NZ2o-sOKeBgBnMczODwPg5m8GgG9_gyiWaS8p7gHgi2ac3-n6Drb5QBD3z8fJvj9OE1WLH1Ctf8D9UOZ78</recordid><startdate>198011</startdate><enddate>198011</enddate><creator>WANG, H. A.</creator><creator>KRÖGER, F. A.</creator><general>Blackwell Publishing Ltd</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>198011</creationdate><title>Chemical Diffusion in Polycrystalline Al2O3</title><author>WANG, H. A. ; KRÖGER, F. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3413-df78a8ec4b881226ce871a66655449ee0d34d0c81c4abf2dbfd3082e2b06a0b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, H. A.</creatorcontrib><creatorcontrib>KRÖGER, F. A.</creatorcontrib><collection>Istex</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, H. A.</au><au>KRÖGER, F. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Diffusion in Polycrystalline Al2O3</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1980-11</date><risdate>1980</risdate><volume>63</volume><issue>11-12</issue><spage>613</spage><epage>619</epage><pages>613-619</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Chemical diffusion in poly crystalline α‐Al2O3 doped with Ti or Fe was studied through the movement of a color front on oxidation of reduced samples. The diffusion is faster in polycrystal‐line than in single‐crystal material. The oxygen pressure dependence of the rate of diffusion indicates that neutral interstitial oxygen is the major mobile species at the grain boundaries. A theory is presented which accounts for the data and explains the difference in the rates of oxidation and reduction and their dependence on oxygen pressure. Grain boundaries with precipitates of FeAl2O4 or TiAl2O5 appear to transport oxygen faster than clean boundaries.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1980.tb09846.x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 1980-11, Vol.63 (11-12), p.613-619 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_1298370205 |
source | Wiley Online Library Journals Frontfile Complete; Periodicals Index Online |
title | Chemical Diffusion in Polycrystalline Al2O3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Diffusion%20in%20Polycrystalline%20Al2O3&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=WANG,%20H.%20A.&rft.date=1980-11&rft.volume=63&rft.issue=11-12&rft.spage=613&rft.epage=619&rft.pages=613-619&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1151-2916.1980.tb09846.x&rft_dat=%3Cproquest_wiley%3E1298370205%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298370205&rft_id=info:pmid/&rfr_iscdi=true |