Creep of Mixed-Oxide Fuel Pellets at High Stress
The rate of steady‐state compressive creep in (U,Pu)O2‐ε was investigated in the power‐law creep region (at a constant stress of 69 MN/m2 between 1600° and 1500°C) as a function of the oxygen‐to‐metal (O/M) ratio (1.88 to 1.995). The creep rate over this range is independent of the starting material...
Gespeichert in:
Veröffentlicht in: | J. Amer. Ceram. Soc., v. 56, no. 6, pp. 330-333 v. 56, no. 6, pp. 330-333, 1973-06, Vol.56 (6), p.330-333 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 333 |
---|---|
container_issue | 6 |
container_start_page | 330 |
container_title | J. Amer. Ceram. Soc., v. 56, no. 6, pp. 330-333 |
container_volume | 56 |
creator | ROUTBORT, J. L. VOGLEWEDE, J. C. |
description | The rate of steady‐state compressive creep in (U,Pu)O2‐ε was investigated in the power‐law creep region (at a constant stress of 69 MN/m2 between 1600° and 1500°C) as a function of the oxygen‐to‐metal (O/M) ratio (1.88 to 1.995). The creep rate over this range is independent of the starting material and decreases with increasing O/M ratio. The apparent activation energy for creep and the preexponential structure factor are sensitive functions of the O/M ratio, with approximately the same dependence on this ratio as these parameters measured at low stresses. These results imply that diffusion of the same defect species controls creep deformation in both the stress‐assisted diffusion region (ε∞σ) and the dislocation‐motion region (ε∞σ4.4). |
doi_str_mv | 10.1111/j.1151-2916.1973.tb12507.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_1298367935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298367935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4100-7620419ef228d6a04c1080c12fd65c4c89a6a377a32e0d74cd4878308acc9d803</originalsourceid><addsrcrecordid>eNqVkE9P3DAQxa2qSGwp3yGCc7bjP4ntXhCNgC2igICqx5HrTEq26WZre9Xw7UmUVe_MZTSa955mfoydcFjysT6tx1bwXFheLrnVcpl-clGAXg7v2IIX-9V7tgAAkWsj4JB9iHE9jtwatWBQBaJt1jfZt3agOr8b2pqyyx112T11HaWYuZSt2l_P2WMKFONHdtC4LtLxvh-x75cXT9Uqv7m7-lqd3-RecYBclwIUt9QIYerSgfIcDHgumrosvPLGutJJrZ0UBLVWvlZGGwnGeW9rA_KIncy5fUwtRt8m8s--32zIJ1SqsCDVKDqdRdvQ_91RTLjud2Ez3oVcWCNLbWUxqj7PKh_6GAM1uA3tHxdekANOGHGNE0acWOGEEfcYcRjNZ7P5X9vRyxuceH1eXUg5fZLPCW1MNPxPcOE3llrqAn_cXqF6eLqt7r-sUMlXwd-Frw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298367935</pqid></control><display><type>article</type><title>Creep of Mixed-Oxide Fuel Pellets at High Stress</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Periodicals Index Online</source><creator>ROUTBORT, J. L. ; VOGLEWEDE, J. C.</creator><creatorcontrib>ROUTBORT, J. L. ; VOGLEWEDE, J. C. ; Argonne National Lab., IL</creatorcontrib><description>The rate of steady‐state compressive creep in (U,Pu)O2‐ε was investigated in the power‐law creep region (at a constant stress of 69 MN/m2 between 1600° and 1500°C) as a function of the oxygen‐to‐metal (O/M) ratio (1.88 to 1.995). The creep rate over this range is independent of the starting material and decreases with increasing O/M ratio. The apparent activation energy for creep and the preexponential structure factor are sensitive functions of the O/M ratio, with approximately the same dependence on this ratio as these parameters measured at low stresses. These results imply that diffusion of the same defect species controls creep deformation in both the stress‐assisted diffusion region (ε∞σ) and the dislocation‐motion region (ε∞σ4.4).</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1973.tb12507.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>ACTIVATION ENERGY ; BINARY MIXTURES ; DEFECTS ; DEFORMATION ; DIFFUSION ; DISLOCATIONS ; FUEL PELLETS- STRESSES ; MOTION ; PLUTONIUM OXIDES- CREEP ; PRESSURE DEPENDENCE ; SUBSTOICHIOMETRY ; URANIUM DIOXIDE- - CREEP ; VERY HIGH PRESSURE ; VERY HIGH TEMPERATURE</subject><ispartof>J. Amer. Ceram. Soc., v. 56, no. 6, pp. 330-333, 1973-06, Vol.56 (6), p.330-333</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4100-7620419ef228d6a04c1080c12fd65c4c89a6a377a32e0d74cd4878308acc9d803</citedby><cites>FETCH-LOGICAL-c4100-7620419ef228d6a04c1080c12fd65c4c89a6a377a32e0d74cd4878308acc9d803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1973.tb12507.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1973.tb12507.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,882,1412,27850,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4459034$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>ROUTBORT, J. L.</creatorcontrib><creatorcontrib>VOGLEWEDE, J. C.</creatorcontrib><creatorcontrib>Argonne National Lab., IL</creatorcontrib><title>Creep of Mixed-Oxide Fuel Pellets at High Stress</title><title>J. Amer. Ceram. Soc., v. 56, no. 6, pp. 330-333</title><description>The rate of steady‐state compressive creep in (U,Pu)O2‐ε was investigated in the power‐law creep region (at a constant stress of 69 MN/m2 between 1600° and 1500°C) as a function of the oxygen‐to‐metal (O/M) ratio (1.88 to 1.995). The creep rate over this range is independent of the starting material and decreases with increasing O/M ratio. The apparent activation energy for creep and the preexponential structure factor are sensitive functions of the O/M ratio, with approximately the same dependence on this ratio as these parameters measured at low stresses. These results imply that diffusion of the same defect species controls creep deformation in both the stress‐assisted diffusion region (ε∞σ) and the dislocation‐motion region (ε∞σ4.4).</description><subject>ACTIVATION ENERGY</subject><subject>BINARY MIXTURES</subject><subject>DEFECTS</subject><subject>DEFORMATION</subject><subject>DIFFUSION</subject><subject>DISLOCATIONS</subject><subject>FUEL PELLETS- STRESSES</subject><subject>MOTION</subject><subject>PLUTONIUM OXIDES- CREEP</subject><subject>PRESSURE DEPENDENCE</subject><subject>SUBSTOICHIOMETRY</subject><subject>URANIUM DIOXIDE- - CREEP</subject><subject>VERY HIGH PRESSURE</subject><subject>VERY HIGH TEMPERATURE</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkE9P3DAQxa2qSGwp3yGCc7bjP4ntXhCNgC2igICqx5HrTEq26WZre9Xw7UmUVe_MZTSa955mfoydcFjysT6tx1bwXFheLrnVcpl-clGAXg7v2IIX-9V7tgAAkWsj4JB9iHE9jtwatWBQBaJt1jfZt3agOr8b2pqyyx112T11HaWYuZSt2l_P2WMKFONHdtC4LtLxvh-x75cXT9Uqv7m7-lqd3-RecYBclwIUt9QIYerSgfIcDHgumrosvPLGutJJrZ0UBLVWvlZGGwnGeW9rA_KIncy5fUwtRt8m8s--32zIJ1SqsCDVKDqdRdvQ_91RTLjud2Ez3oVcWCNLbWUxqj7PKh_6GAM1uA3tHxdekANOGHGNE0acWOGEEfcYcRjNZ7P5X9vRyxuceH1eXUg5fZLPCW1MNPxPcOE3llrqAn_cXqF6eLqt7r-sUMlXwd-Frw</recordid><startdate>197306</startdate><enddate>197306</enddate><creator>ROUTBORT, J. L.</creator><creator>VOGLEWEDE, J. C.</creator><general>Blackwell Publishing Ltd</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>OTOTI</scope></search><sort><creationdate>197306</creationdate><title>Creep of Mixed-Oxide Fuel Pellets at High Stress</title><author>ROUTBORT, J. L. ; VOGLEWEDE, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4100-7620419ef228d6a04c1080c12fd65c4c89a6a377a32e0d74cd4878308acc9d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>ACTIVATION ENERGY</topic><topic>BINARY MIXTURES</topic><topic>DEFECTS</topic><topic>DEFORMATION</topic><topic>DIFFUSION</topic><topic>DISLOCATIONS</topic><topic>FUEL PELLETS- STRESSES</topic><topic>MOTION</topic><topic>PLUTONIUM OXIDES- CREEP</topic><topic>PRESSURE DEPENDENCE</topic><topic>SUBSTOICHIOMETRY</topic><topic>URANIUM DIOXIDE- - CREEP</topic><topic>VERY HIGH PRESSURE</topic><topic>VERY HIGH TEMPERATURE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROUTBORT, J. L.</creatorcontrib><creatorcontrib>VOGLEWEDE, J. C.</creatorcontrib><creatorcontrib>Argonne National Lab., IL</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>OSTI.GOV</collection><jtitle>J. Amer. Ceram. Soc., v. 56, no. 6, pp. 330-333</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROUTBORT, J. L.</au><au>VOGLEWEDE, J. C.</au><aucorp>Argonne National Lab., IL</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep of Mixed-Oxide Fuel Pellets at High Stress</atitle><jtitle>J. Amer. Ceram. Soc., v. 56, no. 6, pp. 330-333</jtitle><date>1973-06</date><risdate>1973</risdate><volume>56</volume><issue>6</issue><spage>330</spage><epage>333</epage><pages>330-333</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The rate of steady‐state compressive creep in (U,Pu)O2‐ε was investigated in the power‐law creep region (at a constant stress of 69 MN/m2 between 1600° and 1500°C) as a function of the oxygen‐to‐metal (O/M) ratio (1.88 to 1.995). The creep rate over this range is independent of the starting material and decreases with increasing O/M ratio. The apparent activation energy for creep and the preexponential structure factor are sensitive functions of the O/M ratio, with approximately the same dependence on this ratio as these parameters measured at low stresses. These results imply that diffusion of the same defect species controls creep deformation in both the stress‐assisted diffusion region (ε∞σ) and the dislocation‐motion region (ε∞σ4.4).</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1973.tb12507.x</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | J. Amer. Ceram. Soc., v. 56, no. 6, pp. 330-333, 1973-06, Vol.56 (6), p.330-333 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_1298367935 |
source | Wiley Online Library Journals Frontfile Complete; Periodicals Index Online |
subjects | ACTIVATION ENERGY BINARY MIXTURES DEFECTS DEFORMATION DIFFUSION DISLOCATIONS FUEL PELLETS- STRESSES MOTION PLUTONIUM OXIDES- CREEP PRESSURE DEPENDENCE SUBSTOICHIOMETRY URANIUM DIOXIDE- - CREEP VERY HIGH PRESSURE VERY HIGH TEMPERATURE |
title | Creep of Mixed-Oxide Fuel Pellets at High Stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20of%20Mixed-Oxide%20Fuel%20Pellets%20at%20High%20Stress&rft.jtitle=J.%20Amer.%20Ceram.%20Soc.,%20v.%2056,%20no.%206,%20pp.%20330-333&rft.au=ROUTBORT,%20J.%20L.&rft.aucorp=Argonne%20National%20Lab.,%20IL&rft.date=1973-06&rft.volume=56&rft.issue=6&rft.spage=330&rft.epage=333&rft.pages=330-333&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1151-2916.1973.tb12507.x&rft_dat=%3Cproquest_osti_%3E1298367935%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298367935&rft_id=info:pmid/&rfr_iscdi=true |