Thermal Conductivity of Transition Metal Carbides

Previous measurements of the thermal conductivity of TiC, ZrC, and NbC by the present authors showed that at low temperatures the phonon‐electron scattering in these materials is strong and gives rise to an unusual temperature dependence of the lattice thermal conductivity. The Callaway analysis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1970-01, Vol.53 (1), p.30-33
Hauptverfasser: RADOSEVICH, L. G., WILLIAMS, WENDELL S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 30
container_title Journal of the American Ceramic Society
container_volume 53
creator RADOSEVICH, L. G.
WILLIAMS, WENDELL S.
description Previous measurements of the thermal conductivity of TiC, ZrC, and NbC by the present authors showed that at low temperatures the phonon‐electron scattering in these materials is strong and gives rise to an unusual temperature dependence of the lattice thermal conductivity. The Callaway analysis of those data is now extended to include the high‐temperature data of Taylor for TiC. The analysis of the thermal conductivity of TiC from 2° to 2000°K indicates that: (1) For samples with higher carbon contents, it is necessary to modify the phonon‐electron relaxation rate at low temperatures and (2) a strong point‐defect scattering term is required to explain the high‐temperature data. This scattering is due primarily to force‐constant changes rather than mass changes which are introduced by the presence of vacancies.
doi_str_mv 10.1111/j.1151-2916.1970.tb11994.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1298365915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298365915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3820-1a74d246d1826995e8dd85ef123fd95251e048aa8dc7374bb2244be6d09d75003</originalsourceid><addsrcrecordid>eNqVkFFLwzAUhYMoOKf_oehza26aNI0PwixzU6ciTHwMaZNi69Zq0un2703p8N37crnknHNvPoTOAUfg67L2jUFIBCQRCI6jLgcQgkbbAzQCtn86RCOMMQl5SvAxOnGu9iOIlI4QLN-NXatVkLWN3hRd9V11u6Atg6VVjau6qm2CR9P1AmXzSht3io5KtXLmbN_H6PV2uszm4eJ5dpdNFmER-zUhKE41oYmGlCRCMJNqnTJTAolLLRhhYDBNlUp1wWNO85wQSnOTaCw0ZxjHY3Qx5H7a9mtjXCfrdmMbv1ICEWmcMAHMq64GVWFb56wp5aet1sruJGDZI5K17BHJnoPsEck9Irn15uvB_FOtzO4fTnk_yaZxf2M4BFSuM9u_AGU_ZOJ_xeTb00zOOX_IyM2LZPEvny17OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298365915</pqid></control><display><type>article</type><title>Thermal Conductivity of Transition Metal Carbides</title><source>Periodicals Index Online</source><source>Access via Wiley Online Library</source><creator>RADOSEVICH, L. G. ; WILLIAMS, WENDELL S.</creator><creatorcontrib>RADOSEVICH, L. G. ; WILLIAMS, WENDELL S.</creatorcontrib><description>Previous measurements of the thermal conductivity of TiC, ZrC, and NbC by the present authors showed that at low temperatures the phonon‐electron scattering in these materials is strong and gives rise to an unusual temperature dependence of the lattice thermal conductivity. The Callaway analysis of those data is now extended to include the high‐temperature data of Taylor for TiC. The analysis of the thermal conductivity of TiC from 2° to 2000°K indicates that: (1) For samples with higher carbon contents, it is necessary to modify the phonon‐electron relaxation rate at low temperatures and (2) a strong point‐defect scattering term is required to explain the high‐temperature data. This scattering is due primarily to force‐constant changes rather than mass changes which are introduced by the presence of vacancies.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1970.tb11994.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><ispartof>Journal of the American Ceramic Society, 1970-01, Vol.53 (1), p.30-33</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3820-1a74d246d1826995e8dd85ef123fd95251e048aa8dc7374bb2244be6d09d75003</citedby><cites>FETCH-LOGICAL-c3820-1a74d246d1826995e8dd85ef123fd95251e048aa8dc7374bb2244be6d09d75003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1970.tb11994.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1970.tb11994.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27869,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>RADOSEVICH, L. G.</creatorcontrib><creatorcontrib>WILLIAMS, WENDELL S.</creatorcontrib><title>Thermal Conductivity of Transition Metal Carbides</title><title>Journal of the American Ceramic Society</title><description>Previous measurements of the thermal conductivity of TiC, ZrC, and NbC by the present authors showed that at low temperatures the phonon‐electron scattering in these materials is strong and gives rise to an unusual temperature dependence of the lattice thermal conductivity. The Callaway analysis of those data is now extended to include the high‐temperature data of Taylor for TiC. The analysis of the thermal conductivity of TiC from 2° to 2000°K indicates that: (1) For samples with higher carbon contents, it is necessary to modify the phonon‐electron relaxation rate at low temperatures and (2) a strong point‐defect scattering term is required to explain the high‐temperature data. This scattering is due primarily to force‐constant changes rather than mass changes which are introduced by the presence of vacancies.</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqVkFFLwzAUhYMoOKf_oehza26aNI0PwixzU6ciTHwMaZNi69Zq0un2703p8N37crnknHNvPoTOAUfg67L2jUFIBCQRCI6jLgcQgkbbAzQCtn86RCOMMQl5SvAxOnGu9iOIlI4QLN-NXatVkLWN3hRd9V11u6Atg6VVjau6qm2CR9P1AmXzSht3io5KtXLmbN_H6PV2uszm4eJ5dpdNFmER-zUhKE41oYmGlCRCMJNqnTJTAolLLRhhYDBNlUp1wWNO85wQSnOTaCw0ZxjHY3Qx5H7a9mtjXCfrdmMbv1ICEWmcMAHMq64GVWFb56wp5aet1sruJGDZI5K17BHJnoPsEck9Irn15uvB_FOtzO4fTnk_yaZxf2M4BFSuM9u_AGU_ZOJ_xeTb00zOOX_IyM2LZPEvny17OA</recordid><startdate>197001</startdate><enddate>197001</enddate><creator>RADOSEVICH, L. G.</creator><creator>WILLIAMS, WENDELL S.</creator><general>Blackwell Publishing Ltd</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>197001</creationdate><title>Thermal Conductivity of Transition Metal Carbides</title><author>RADOSEVICH, L. G. ; WILLIAMS, WENDELL S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3820-1a74d246d1826995e8dd85ef123fd95251e048aa8dc7374bb2244be6d09d75003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RADOSEVICH, L. G.</creatorcontrib><creatorcontrib>WILLIAMS, WENDELL S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RADOSEVICH, L. G.</au><au>WILLIAMS, WENDELL S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity of Transition Metal Carbides</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1970-01</date><risdate>1970</risdate><volume>53</volume><issue>1</issue><spage>30</spage><epage>33</epage><pages>30-33</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Previous measurements of the thermal conductivity of TiC, ZrC, and NbC by the present authors showed that at low temperatures the phonon‐electron scattering in these materials is strong and gives rise to an unusual temperature dependence of the lattice thermal conductivity. The Callaway analysis of those data is now extended to include the high‐temperature data of Taylor for TiC. The analysis of the thermal conductivity of TiC from 2° to 2000°K indicates that: (1) For samples with higher carbon contents, it is necessary to modify the phonon‐electron relaxation rate at low temperatures and (2) a strong point‐defect scattering term is required to explain the high‐temperature data. This scattering is due primarily to force‐constant changes rather than mass changes which are introduced by the presence of vacancies.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1970.tb11994.x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1970-01, Vol.53 (1), p.30-33
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_1298365915
source Periodicals Index Online; Access via Wiley Online Library
title Thermal Conductivity of Transition Metal Carbides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity%20of%20Transition%20Metal%20Carbides&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=RADOSEVICH,%20L.%20G.&rft.date=1970-01&rft.volume=53&rft.issue=1&rft.spage=30&rft.epage=33&rft.pages=30-33&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/j.1151-2916.1970.tb11994.x&rft_dat=%3Cproquest_cross%3E1298365915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298365915&rft_id=info:pmid/&rfr_iscdi=true